K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2015

 

\(\frac{M}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\)

\(\frac{2M}{3}=M-\frac{M}{3}=\frac{1}{3}-\frac{1}{3^{100}}\)

\(2M=1-\frac{1}{3^{99}}\Rightarrow M=\frac{1}{2}-\frac{1}{2.3^{99}}

\(M=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}\)

\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99.101}{100.100}\)

\(=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)

Xét vế phải :

\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)

\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)

17 tháng 12 2017

a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210

   = (2 + 22) + (23 + 24) +.....+ (29 + 210)

   = 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)

   = 3.(2 + 23 +.... + 29) chia hết cho 3

   => S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)

b) 1+32+33+34+...+399

=(1+3+32+33)+....+(396+397+398+399)

=40+.........+396.40

=40.(1+....+396) chia hết cho 40 (đpcm)

17 tháng 12 2017

ai trả lời giúp mình mình k cho

13 tháng 3 2016

Tính một lúc ta được M=1+2+3+...+98

\(M=\left(1+98\right)+\left(2+97\right)+...\left(49+50\right)\)

\(M=99+99+99+...+99\)

Vậy M chia hết cho 99

Ai tích mk mk tích lại cho

Tìm 2M rồi trừ cho M sẽ ra kết quả

Mình giải cho đợi tí

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Đề lỗi công thức khá khó đọc. Bạn xem lại.

15 tháng 4 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}< \frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}< \frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)