K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

a) Xét ΔABE  và ΔACF có

Alà góc chung

AEB=AFC(=90^O)

=> ΔABE đồng dạng ΔACF (g.g)

=>AF/AE​=AC/AB​

=> AB/AE​=AC/AF​

XétΔAEF và  ΔABC có

AB/AE​=AC/AF​

Và Agóc chung

Suy raΔAEF đồng dạngΔABC( c.g.c) 

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc ADE=góc ABC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng với ΔABC

d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{20}{2}=10\left(cm\right)\)

Xét ΔAEF có 

M\(\in\)AE(gt)

B\(\in\)AF(gt)

\(\dfrac{AM}{ME}=\dfrac{AB}{BF}\left(\dfrac{10}{5}=\dfrac{12}{6}=2\right)\)

Do đó: MB//EF(Định lí Ta lét đảo)

hay BC//EF(Đpcm)

a) Cm \(AD\cdot BC=AB\cdot DC\)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác của tam giác)

hay \(AD\cdot BC=AB\cdot DC\)(đpcm)