Cho 🔺ABC nhọn đường cao AD, BE và CF
a/ Chứng minh 🔺AEF đồng dạng 🔺ABC
b/ Chứng minh AE×BF×CM = AB×BC×CA×cosA×cosB×cosC
(Mong mọi người giúp đỡ 😖)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc ADE=góc ABC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=12^2+16^2=400\)
hay BC=20(cm)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{20}{2}=10\left(cm\right)\)
Xét ΔAEF có
M\(\in\)AE(gt)
B\(\in\)AF(gt)
\(\dfrac{AM}{ME}=\dfrac{AB}{BF}\left(\dfrac{10}{5}=\dfrac{12}{6}=2\right)\)
Do đó: MB//EF(Định lí Ta lét đảo)
hay BC//EF(Đpcm)
a) Cm \(AD\cdot BC=AB\cdot DC\)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác của tam giác)
hay \(AD\cdot BC=AB\cdot DC\)(đpcm)
a) Xét ΔABE và ΔACF có
Alà góc chung
AEB=AFC(=90^O)
=> ΔABE đồng dạng ΔACF (g.g)
=>AF/AE=AC/AB
=> AB/AE=AC/AF
XétΔAEF và ΔABC có
AB/AE=AC/AF
Và Agóc chung
Suy raΔAEF đồng dạngΔABC( c.g.c)