K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2021

a: Xét ΔAHB và ΔAHC có 

AH chung

HB=HC

AB=AC

Do đó: ΔAHB=ΔAHC

8 tháng 4 2022

có cần hình k

 

8 tháng 4 2022

tự vẽ hình 

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

11 tháng 10 2019

Hình bạn tự vẽ nha!

Bài 2:

a) Xét 2 \(\Delta\) vuông \(ABH\)\(KBH\) có:

\(\widehat{AHB}=\widehat{KHB}=90^0\left(gt\right)\)

\(AH=KH\left(gt\right)\)

Cạnh BH chung

=> \(\Delta ABH=\Delta KBH\) (cạnh huyền - cạnh góc vuông)

b) Ta có: \(\Delta ABC\) vuông tại \(A\left(gt\right)\)

=> \(\widehat{B}+\widehat{C}=90^0\) (tính chất tam giác vuông)

=> \(2.\widehat{B}=90^0\)

=> \(\widehat{B}=90^0:2\)

=> \(\widehat{B}=45^0\)

=> \(45^0+\widehat{C}=90^0\)

=> \(\widehat{C}=90^0-45^0\)

=> \(\widehat{C}=45^0.\)

Xét \(\Delta BKC\) có:

\(\widehat{B}+\widehat{C}+\widehat{BKC}=180^0\) (định lí tổng 3 góc trong một tam giác)

Thay số vào ta được:

\(45^0+45^0+\widehat{BKC}=180^0\)

=> \(90^0+\widehat{BKC}=180^0\)

=> \(\widehat{BKC}=180^0-90^0\)

=> \(\widehat{BKC}=90^0.\)

Vậy \(\widehat{BKC}=90^0.\)

Chúc bạn học tốt!

11 tháng 10 2019

Thanks bn nhìu👍

2 tháng 2 2022

Ta có :O là trung điểm của BC(gt)

           O là trung điểm của AK(OA=OK)

=>ABKC là hình bình hành(dhnb)

Mà góc BAC = 90 độ

=>ABKC là hình chữ nhật (dhnb)

=>AB=CK và góc ACK = 90 độ

Xét tam giác ABC và tam giác CKA có:

 AB=CK(cmt)

 góc BAC=góc KCA( cùng bằng 90 độ)

 AC chung

Vậy tam giác ABC = tam giác CKA(c.g.c)

b)Xét tam giác AHB và tam giác CHA có

 góc AHB = góc CHA (=90 độ)

 góc BAH =góc ACH(cùng phụ với góc B)

Vậy tam giác AHB đồng dạng tam giác CHA(g.g)

=>\(\dfrac{AB}{AH}=\dfrac{AC}{CH}\)(1)

Ta có AH\(\perp\)CH

         ED\(\perp\)CH

=>AH//DE

Xét tam giác ACH có

 AH//DE

=>\(\dfrac{AE}{HD}=\dfrac{AC}{CH}\)

=>\(\dfrac{AE}{AH}=\dfrac{AC}{CH}\)(do AH=AD)(2)

Từ(1) và (2) => \(\dfrac{AB}{AH}=\dfrac{AE}{AH}\)

                    =>AB=AE(đpcm)

2 tháng 2 2022

-Lớp 7 chưa học Tam giác đồng dạng?

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui