1) Có bao nhiêu cách viết số 102 dưới dạng tổng các số tự nhiên liên tiếp ??
2) Hãy viết số 108 dưới dạng tổng các số tự nhiên liên tiếp .
TRÌNH BÀY LỜI GIẢI RÕ RÀNG GIÙM MIH NHÉ !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: Không có 2 số liên tiếp nào có tổng là 108
=>108=A+B+C
Mà 108:3=36=>108=36+36+36
Chia đều đơn vị của các số 36 thành các số liên tiếp ta có:
36+36+36=(35+1)+36+36=35+36+(36+1)=35+36+37
Vậy............
ta co: tu 70 den 80 ban chon lay 1 so mk chon so 75 thi 75= 24+25+26 va 75= 37+38
Viết số 108 dưới dạng tổng số tự nhiên liên tiếp . Hỏi có mấy cách , hãy trình bày .
Làm giùm đi !!!!
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Có 3 cách. Đó là
108 = 10 + 11 + ..... + 17
108 = 8 + 9 + ........+ 16
108 = 35 + 36 +37
gọi các số đó là n ; n + 1; n+ 2; ...; n + m (Có m + 1 số )
n + (n+1) + (n +2) + ...+ (n + m) = (n + n+ m).(m+1) : 2 = 108
=> (2n + m).(m + 1) = 216
Ta có: 2n + m + m + 1 = 2n + 2m + 1 là số lẻ => 2n + m và m + 1 không cùng tính chẵn lẻ
phân tích 216 = 8.27 = 24.9 = 72.3 = 216.1. Mà 2n + m > m + 1. ta có bảng sau:
m+1 | 8 | 9 | 3 | 1 |
m | 7 | 8 | 2 | 0 |
2n+m | 27 | 24 | 72 | 216 |
2n | 20 | 16 | 70 | 216 |
n | 10 | 8 | 35 | 108 |
Vậy có thể viết 108 thành tổng các số tự nhiên liên tiếp lớn hơn 0 như sau:
108 = 10 + 11 + ...+ 17
108 = 8+ 9 + ...+ 16
108 = 35 + 36 + 37
108 = 108 + 0 (không thỏa mãn )
8+9+10+11+12+13+14+15+16=108
tick đúng cho mình bù xù tóc tai mới tìm được mấy số này đó
Bài 1 :
Gỉa sử số 108 viết được dưới dạng tổng của k số tự nhiên liên tiếp là :
\(n+1,n+2,...n+\)\(k\)với \(k,n\in N,k\ge2,n+1\ge1\).Ta có :
\(\left(n+1\right)+\left(n+2\right)+...+\left(n+k\right)=108\)
\(\frac{\left(2n+k+1\right)}{2}=108\)
\(\left(2n+k+1\right)=216\)
Bài toán đưa đến việc tìm các ước của 216 .Ta đưa ra hai nhận xét sau để giảm bớt sô trường hợp phải xét :
1) \(2n+k+1>k\ge2\)
2) Hiệu \(\left(2n+1+k\right)-k=2n+1\), là số lẻ nên trong hai số \(2n+k+1\) và k có một số chẵn , một số lẻ
Do đó ta chỉ cần tìm ước lẻ của \(216\), đồng thời trong 2 số \(2n+k+1\) và k có tích bằng \(216\), chọn k là số nhỏ hơn
Phân tích ra thừa số nguyên tố : \(216=2^3.3^3\). ước lẻ của \(216\) lớn hơn 1
là \(3,9,27\)
Với \(k=3\) thì \(2n+k+1=72\), ta được \(n=34\), do đó :
\(108=35+36+37\)
Với \(k=9\) thì \(2n+k+1=24\),ta được \(n=7\), do đó :
\(108=8+9+...+16\)
Với \(2n+k+1=27\) thì \(k=8\),ta được \(n=9\), do đó :
\(108=10+11+...+17\)
Chúc bạn học tốt ( -_- )
1) giả sử các số N liên tiếp là: x;.........;y
S= x+.............+ y =(x+y)(y-x+1) :2
=>(x+y)(y-x+1) =2.102=1.204=4.51=12.17=3.68=6.34
x=24;y=27 . mình đi hoc rồi khi khác nhé.