K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

a) CÓ TAM GIÁC MNP CÂN TẠI M(gt)

=> MN=MP( ĐN TAM GIÁC CÂN)

XÉT TAM GIÁC MFP CÂN TẠI F VÀ TAM GIÁC MEN CÂN TẠI E CÓ:

MP=MN(CMT)

GÓC M CHUNG

=> TAM GIÁC MFP = TAM GIÁC MEN( CH-GN)

b)CÓ TAM GIÁC MFP = TAM GIÁC MEN( CM Ở CÂU a)

XÉT TAM GIÁC MFO VUÔNG TẠI F VÀ TAM GIÁC MEO VUÔNG TẠI E CÓ:

MO CHUNG

MF=ME( CMT)

=> TAM GIÁC MFO = TAM GIÁC MEO( CH-CGV)

=> GOC FMO = GÓC EMO( 2 GÓC TƯƠNG ỨNG)

=> MO LÀ TIA PHÂN GIÁC CỦA GÓC NMP

a: Xét ΔMNI và ΔMPI có 

MN=MP

NI=PI

MI chung

Do đó: ΔMNI=ΔMPI

b: Ta có: ΔMNP cân tại M

mà MI là đường trung tuyến

nên MI là đường trung tuyến

c: Ta có: ΔMNP cân tại M

mà MI là đường trung tuyến

nên MI là đường cao

a: Xét ΔMIN vuông tại I có IE là đường cao ứng với cạnh huyền MN

nên \(ME\cdot MN=MI^2\left(1\right)\)

Xét ΔMIP vuông tại I có IF là đường cao ứng với cạnh huyền MP

nên \(MF\cdot MP=MI^2\left(2\right)\)

Từ (1) và (2) suy ra \(ME\cdot MN=MF\cdot MP\)

hay \(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Xét ΔMEF vuông tại M và ΔMPN vuông tại M có 

\(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Do đó: ΔMEF\(\sim\)ΔMPN

22 tháng 9 2021

CM : MO vuông góc với EF cơ mà

 

a: Xét ΔMIN vuông tại I có IE là đường cao ứng với cạnh huyền MN

nên \(ME\cdot MN=MI^2\left(1\right)\)

Xét ΔMIP vuông tại I có IF là đường cao ứng với cạnh huyền MP

nên \(MF\cdot MP=MI^2\left(2\right)\)

Từ (1) và (2) suy ra \(ME\cdot MN=MF\cdot MP\)

hay \(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Xét ΔMEF vuông tại M và ΔMPN vuông tại M có 

\(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Do đó: ΔMEF\(\sim\)ΔMPN

24 tháng 9 2021

CMR MO vuông góc với EF

25 tháng 11 2018

a) ta có : 

KI vuông góc vs MN (gt),MNvuông góc vs MP (gt), IP' vuông góc vs MP(gt)

suy ra : tứ giác MKIP' là hình chữ nhật(đpcm)

b) ta có : MI = KP (tc hai đường chéo HCN)

suy ra : MF = FI (gt)

KF = P'F = 1/2KP' = 1/2 MF(tc)

vậy 3 đm K,F,P' thẳng hàng

c) ta có : 

KI vuông góc vs NM (gt) , mà MN vuông góc vs MP (gt)

suy ra : 

KI song song vs MP , có PI = IN (gt) 

suy ra : tam giác MNP có KI là ĐBH

suy ra IK bằng  1/2 MP (tc)

có : KI + MP' (hcn) , vậy suy ra : KI = MP' = P'P (tc),vậy MP' = P'P (tc)    (1)

có IP' = P'L (tc)    (2)

mà IL vuông góc vs MP (gt)     (3)

vậy từ (1),(2) và (3) suy ra : tứ giác MIPL là hinh thoi 

12 tháng 5 2017

a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)

b) xét tam giác MNI và MPI có 

    MI chung 

    MN=MP(GT)

    IN=IP(MI là trung tuyến nên I là trung điểm NP)

SUY ra tam giác MNI=MPI(C-C-C)

c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)

d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I

   Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP

    Mà NP=12cm(gt) suy ra NI=12x1/2=6cm

   xét tam giác vuông MNI có

    NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)

   Suy ra MI2=NM2-NI2

 mà NM=10CM(gt) NI=6CM(cmt)

suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8

mà MI>0 Suy ra MI=8CM (đpcm)

ế) mik gửi cho bn bằng này nhé 

12 tháng 5 2017

a) Vì MN=MP => tam giác MNP là tam giác cân tại M.

b)Xét tam giác MIN và tam giác MIP có:

           MN=MP (vì tam giác MNP cân)

           \(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)

            NI=PI(vì MI là trung tuyến)

=> tam giác MIN=tam giác MIP(c.g.c)

c) Ta có: MN=MP

              IN=IP

=> M,I thuộc trung trực của NP

Hay MI là đường trung trực của NP

d) IN=IP=NP/2=12/2=6(cm)

Xét tam giác MIN có góc MIN =90*

 =>  MN^2=MI^2 + NI^2

 =>  MI^2=MN^2-NI^2

 =>  MN^2 = 10^2 - 6^2

 =>  MN = 8

e) Tam giác HEI có goc IHE=90*

 => góc HEI + góc HIE= 90*

Mà góc HIE = góc MEF/2

 => góc MEF/2 + góc HEI = 90*   (1)

Mà góc MEF + góc HEI + góc IEF = 180*

 => góc MEF/2 + góc IEF = 90*     (2)

  Từ (1) và (2)   =>  góc HEI = góc IEF

Hay EI là tia phân giác của góc HEF