K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

DỄ THÔI phần a xét tứ giác AEDF có AF//DE(vì DE//AB gt)

                                                       AE//DF(vì DE//AB gt)

=> AEDF là hbh 

phần b thì bt này thiếu dk tam giác ABC cân nữa mới lm đc

 

17 tháng 3 2020

a. Vì AE//DF và DE//AF => AEDF là hình bình hành

Vậy AEDF là hình bình hành

b.ADEF là hình thoi <=> AD là phân giác góc BAC

  ADEF là hình vuông <=> ​​AEDF là hình thoi <=> AD là phân giác góc BAC

                                          và A=90độ

  Vậy...

20 tháng 12 2015

a,Ta có: FA=FC=AC:2(gt)

          EC=EB=BC:2(gt)

=>FE là đường TB của tam giác ABC => EF//AD

CMTT: DE//FA

=> ADEF là hình bình hành

b,ADEF LÀ HÌNH thoi => AF = AD

=> AC=AB =>ABC là tam giác cân

Vậy đấy dễ mà tick cko mk nha!!!

3 tháng 11 2021

a.

Xét tam giác ABC có

AF = FC

BE = EC

=>FE là đường trung bình của tam giác ABC ( tính chất )

=> FE // AB mà D thuộc AB nên FE // AD (1)

Xét tiếp tam giác ABC có

DB = AD

BE = EC

=> DE là đường trung bình của tam giác ABC ( tính chất )

=> DE // AC mà F thuộc AC nên DE // AF (2)

Từ (1) và (2) => Tứ Giác ADEF là hình bình hành ( dấu hiệu ) ( đpcm)

b.

Để Tứ Giác ADEF là hình chữ nhật thì góc DAE = 90 độ ( hay góc BAC = 90 độ ) DE và EF phải lần lượt là trung trực của AB và AC, DE và EF phải giao nhau tại trung điểm của BC ( là điểm E )

15 tháng 1 2019

xét tam giác ABC có BD=DA; BE=EC nên DE là đường trung bình của tam giác ABC suy ra DE song song vs AF

tương tự cm đc EFsong song vs AD

suy ra tứ giác ADEF là hình bình hành

16 tháng 1 2019

a)  Xét tam giác ABC ta có : \(AF=CF\) ( vì F là trung điểm của AC )

                                           \(EB=EC\)( vì E là trung điểm của BC )

=> EF là đường trung bình tam giác ABC.

\(\Rightarrow EF//AD\)(1)

và  \(EF=\frac{1}{2}AB\)

Mà \(BD=AD\)

\(\Leftrightarrow EF=AD\) (2)

Từ (1) và (2)

=> ADEF là hình bình hành  (đpcm)

27 tháng 12 2021

a: Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của BC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//AF và DE=AF

hay ADEF là hình bình hành

Bài 2:

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trug điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM

=>AM=BC/2

=>ΔABC vuông tại A

a) Xét ∆ABC có : 

D là trung điểm AB 

E là trung điểm BC 

=> DE là đường trung bình ∆ABC 

=> DE//AC , DE = \(\frac{1}{2}AC\)\(\frac{16}{2}=8\)cm

Xét ∆ABC có : 

E là trung điểm BC 

F là trung điểm AC 

=> FE là đường trung bình ∆ABC 

=> FE//AB , FE = \(\frac{1}{2}AB=6cM\)

Xét tứ giác AFED có : 

AD//EF ( AB//FE , D\(\in\)AB )

DE//FA ( DE//AC , F \(\in\)AC )

=> AFED là hình bình hành 

Mà BAC = 90° 

=> AFED là hình chữ nhật 

=> DEF= EFA = FAD = ADE = 90° 

Vì F là trung điểm AC 

=> FA = FC = 8cm

Áp dụng định lý Py - ta -go vào ∆AEF ta có : 

AE2 = FE2 + AF2 

=> AE = 10cm

b) Xét ∆ABC ta có : 

D là trung điểm AB 

F là trung điểm AC 

=> DF là đường trung bình ∆ABC 

=> DF//BC  

Xét tứ giác BEFD ta có : 

BE//DF ( BC//DF , E \(\in\)BC )

BD//FE ( AB//FE , D\(\in\)AB )

=> BEFD là hình bình hành 

c) Chứng minh trên