Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì AE//DF và DE//AF => AEDF là hình bình hành
Vậy AEDF là hình bình hành
b.ADEF là hình thoi <=> AD là phân giác góc BAC
ADEF là hình vuông <=> AEDF là hình thoi <=> AD là phân giác góc BAC
và A=90độ
Vậy...
Bài 2:
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trug điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
=>ΔABC vuông tại A
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).
DỄ THÔI phần a xét tứ giác AEDF có AF//DE(vì DE//AB gt)
AE//DF(vì DE//AB gt)
=> AEDF là hbh
phần b thì bt này thiếu dk tam giác ABC cân nữa mới lm đc