Tìm GTLN của bt: P = \(\dfrac{x}{x+1}\)+ \(\dfrac{y}{y+1}+\dfrac{z}{z+1}\) với x,y,z > 0 và x+y+z = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Nếu \(x+y+z\ne0\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}=\dfrac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y+z-x}{x}=1\\\dfrac{x+z-y}{y}=1\\\dfrac{x+y-z}{z}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z-x=x\\x+z-y=y\\x+y-z=z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\x+z=2y\\x+y=2z\end{matrix}\right.\)
\(\Leftrightarrow B=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)\)
\(\Leftrightarrow B=\dfrac{2z}{y}.\dfrac{2x}{z}.\dfrac{2y}{x}=2\)
+) Nếu \(x+y+z\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
\(\Leftrightarrow B=\dfrac{-z}{y}.\dfrac{-x}{z}.\dfrac{-y}{x}=-1\)
Vậy ..
Hằng à,t chưa thấy đứa này ngu như mày
\(\dfrac{2x.2y.2z}{xyz}=2\) thì học hành cái qq j
* Có BĐT : \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\) với $x,y>0$ ( Chứng minh bằng xét hiệu )
Ta có BĐT : \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\Rightarrow\dfrac{x+y}{x^2+y^2}\le\dfrac{2\left(x+y\right)}{\left(x+y\right)^2}=\dfrac{2}{x+y}\)
Chứng minh tương tự khi đó :
\(P\le\dfrac{2}{x+y}+\dfrac{2}{y+z}+\dfrac{2}{z+x}\)
\(\Rightarrow2P\le\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}=2.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=4032\)
\(\Rightarrow P\le2016\)
Xét A= \(\dfrac{x}{\sqrt{x+2yz}}\).\(\dfrac{1}{\sqrt{2}}\)=\(\dfrac{x}{\sqrt{2x+4yz}}\)=\(\sqrt{\dfrac{x.x}{2x+4yz}}\)
ta có x+y+z=\(\dfrac{1}{2}\)=> 2x+2y+2z= 1=> 2x+4yz= 4yz+1-2y-2z=(2y-1)(2z-1)
từ đó A= \(\sqrt{\dfrac{x}{2y-1}.\dfrac{x}{2z-1}}\)=\(\sqrt{\dfrac{x}{2y-2x-2y-2z}.\dfrac{x}{2z-2x-2y-2z}}\)
=\(\sqrt{\dfrac{x}{-2\left(x+y\right)}\dfrac{x}{-2\left(x+z\right)}}\)=\(\sqrt{\dfrac{1}{4}.\dfrac{x}{x+z}.\dfrac{x}{x+y}}\)=\(\dfrac{1}{2}\sqrt{\dfrac{x}{x+y}.\dfrac{x}{x+z}}\)
Áp dụng cô si \(\sqrt{ab}\)≤\(\dfrac{a+b}{2}\) =>\(\dfrac{1}{2}\sqrt{ab}\)≤\(\dfrac{a+b}{4}\)ta được
A≤\(\dfrac{1}{4}\).(\(\dfrac{x}{x+y}\)+\(\dfrac{x}{x+z}\))
cmmt thì \(\dfrac{P}{\sqrt{2}}\)≤ \(\dfrac{1}{4}\).\(\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{y+x}+\dfrac{y}{y+z}+\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)\)
\(\dfrac{P}{\sqrt{2}}\)≤\(\dfrac{3}{4}\)=>P≤\(\dfrac{3.\sqrt{2}}{4}\)=\(\dfrac{3}{2\sqrt{2}}\)
Dấu"=" xảy ra <=> x=y=z=\(\dfrac{1}{6}\)
Ta có: \(\dfrac{x}{x+1}=1-\dfrac{1}{x+1}\)
\(\dfrac{y}{y+1}=1-\dfrac{1}{y+1}\)
\(\dfrac{z}{z+1}=1-\dfrac{1}{z+1}\)
Cộng vế theo vế:
\(P=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)
Áp dụng BĐT Cauchy- Schwarz dạng Engel:
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z+3}=\dfrac{9}{4}\)
\(\Rightarrow P\le3-\dfrac{9}{4}=\dfrac{3}{4}\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
cj giỏi quá