K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

coi như giải hệ pt

\(\hept{\begin{cases}y=x+1\left(1\right)\\y^2-3y\sqrt{x}+2x=0\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\left(y^2-3\sqrt{x}.y+\frac{9x}{4}\right)=\frac{9x}{4}-2x=\frac{x}{2}\\ \)

\(\left(y-\frac{3\sqrt{x}}{2}\right)^2=\left(\frac{\sqrt{x}}{2}\right)^2\Rightarrow\orbr{\begin{cases}y=\frac{3\sqrt{x}}{2}-\frac{\sqrt{x}}{2}=\sqrt{x}\\y=\frac{3\sqrt{x}}{2}+\frac{\sqrt{x}}{2}=2\sqrt{x}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=x+1\left(3\right)\\2\sqrt{x}=x+1\left(4\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{1}{4}-1\left(vonghiem\right)\\\left(\sqrt{x}-1\right)^2=0\Rightarrow\sqrt{x}=1\Rightarrow x=1\end{cases}}\)

Vậy chỉ có điểm x=1; y=2 thỏa mãn

26 tháng 11 2018

Gọi A(x0;y0) là điểm thuộc đồ thị y = x + 1 thỏa mãn đẳng thức

⇒ y0= x0+1⇒ x0=y0-1

Vì A thỏa mãn đẳng thức nên

y02 - \(3y_0\sqrt{x_0}\)+2x0 =0

⇒ y02 -3y0\(\sqrt{y_0-1}+2\left(y_0-1\right)\)=0

mk ms làm đến đây thôi mong bn thông cảm

27 tháng 11 2018

cảm ơn bạn nhé!

31 tháng 7 2017

Đáp án D

6 tháng 3 2015

N(a, 2a-2); M(b, b-4). giải hpt sau

\(\begin{cases}\\\overrightarrow{ON}=k.\overrightarrow{OM}\end{cases}OM^2.ON^2=64\)

dùng pp thế đc 1 phương trình bậc 4 theo 2 hoặc b

 

a: Khi m=-1 thì (d): y=-x+1-(-1)=-x+2

PTHĐGĐ là:

x^2+x-2=0

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

=>y=4 hoặc y=1

b: PTHĐGĐ là:

x^2-mx+m-1=0

Δ=(-m)^2-4(m-1)

=m^2-4m+4=(m-2)^2>=0

Để (P) cắt (d) tại hai điểm pb thì m-2<>0

=>m<>2

\(\sqrt{x_1}+\sqrt{x_2}=3\)

=>x1+x2+2 căn x1x2=9

=>\(m+2\sqrt{m-1}=9\)

=>\(m-1+2\sqrt{m-1}=8\)

=>\(\left(\sqrt{m-1}+4\right)\left(\sqrt{m-1}-2\right)=0\)

=>m=5

3 tháng 4 2023

m<>2 là gì vậy ạ?

NM
2 tháng 1 2022

ta có 

\(x^2+y^2-2x+4y=0\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=5\)

Vậy tập hợp các điểm thỏa mãn phương trình trên là đường tròn tâm I( 1,-2) bán kính \(\sqrt{5}\)