tim gtnn cua a= (x-2) nhan (x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(A=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{4}{20}=\frac{1}{5}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x^2+y^2=20\\x^2=y^2\end{matrix}\right.\)\(\Rightarrow x=y=\pm\sqrt{10}\)
Vậy \(Min_A=\frac{1}{5}\) khi \(x=y=\pm\sqrt{10}\)
\(A=x-2\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)^2+\left(3y+1-\left(\sqrt{y}+1\right)^2\right)\)
\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(y-\sqrt{y}+\frac{1}{4}\right)-\frac{1}{2}\)
\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Amin= -1/2 khi y=1/4; x=9/4
\(A=x^2-3x+1\)
\(=x^2-2x\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1\)
\(=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}+\frac{4}{4}\)
\(=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\) \(\forall\) \(x\) \(\Rightarrow\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\) \(\forall\) \(x\)
Vậy GTNN của A là \(-\frac{5}{4}\) tại \(x=\frac{3}{2}\)
A=[(x-1)(x+6)][(x+2)(x+3)]
=(x2+5x-6)(x2+5x+6)
=(x2+5x)2-36
Ta thấy (x2+5x)2 >=0 nên (x2+5x)2-36 >=-36
Vậy GTNN của A là -36