Tìm GTLN của hàm số:
f(x)=\(x\sqrt{x-9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)
Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)
Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Lời giải:
TXĐ: $[-1;1]$
$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$
$y'=0\Leftrightarrow x=0$
$f(0)=2$;
$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$
24.
\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)
\(y_{max}=4\)
26.
\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)
Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)
\(y_{max}=\sqrt{2}\)
b.
\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
Ta có: \(y=\sqrt{3+x}+\sqrt{5-x}\)
ĐKXĐ: \(-3\le x\le5\)
\(y^2=3+x+5-x+2\sqrt{\left(3+x\right)\left(5-x\right)}=8+2\sqrt{\left(3+x\right)\left(5-x\right)}\)\(\ge8\)
\(\Rightarrow y\ge2\sqrt{2}\)
Dấu "=" xảy ra khi và chỉ khi \(\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)(thỏa mãn)
Vậy min y = \(2\sqrt{2}\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
mặt khác \(y^2\) = \(8+2\sqrt{\left(3+x\right)\left(5-x\right)}\le8+3+x+5-x=16\)
\(\Rightarrow y\le4\)
Dấu"=" xảy ra khi và chỉ khi \(3+x=5-x\Leftrightarrow x=1\)(thỏa mãn)
Vậy max y = 4 \(\Leftrightarrow x=1\)
Do \(\left\{{}\begin{matrix}x\ge-1\Rightarrow x+1\ge0\\\sqrt{x^2+1}>0\end{matrix}\right.\) \(\Rightarrow y\ge0\)
\(y_{min}=0\) khi \(x=-1\)
Lại có: \(y^2=\dfrac{\left(x+1\right)^2}{x^2+1}=\dfrac{x^2+2x+1}{x^2+1}=\dfrac{2\left(x^2+1\right)-x^2+2x-1}{x^2+1}=2-\dfrac{\left(x-1\right)^2}{x^2+1}\le2\)
\(\Rightarrow y\le\sqrt{2}\)
\(y_{max}=\sqrt{2}\) khi \(x=1\)
Do \(\left\{{}\begin{matrix}\left|sinx\right|\le1\\\left|cosx\right|\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin^9x\le sin^2x\\cos^{12}x\le cos^2x\end{matrix}\right.\)
\(\Rightarrow sin^9x+cos^{12}x\le sin^2x+cos^2x=1\)
\(y_{max}=1\) khi \(\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
Lời giải:
Với $x<2, x>2$ thì hàm số luôn xác định nên luôn liên tục với mọi \(x\in\mathbb{R}\setminus \left\{2\right\}\)
Với $x=2$
\( \lim\limits_{x\to 2-}f(x)=\lim\limits_{x\to 2-}(x^2-3x+4)=2 \)
Vậy \(\lim\limits_{x\to 2-}f(x)\neq f(2) \) (vì $2\neq 5$) nên hàm số không liên tục tại $x=2$