Cho tam giác ABC có AB = AC. M là trung điểm của BC.
a) CMR : AM là tia phân giác của góc BAC
b) CMR : AM vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Xét \(\Delta AMB\) và \(\Delta AMC\) có:
\(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\\BM=MC\end{matrix}\right.\)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)
\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)
\(b,\) Vì \(\Delta ABC\) cân tại \(A\)
Mà \(AM\) là tia phân giác \(\widehat{BAC}\)
\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)
\(\Rightarrow AM\perp BC\) tại \(M\)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đo: ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: Xét ΔABD và ΔACE co
AB=AC
góc ABD=góc ACE
BD=CE
Do đo: ΔABD=ΔACE
Xét ΔBHD vuông tại H và ΔCIE vuông tại I có
BD=CE
góc D=góc E
Do đo: ΔBHD=ΔCIE
=>DH=EI
Xét tam giác AMB và tam giác AMC có:
AB=AC(giả thiết)
AM chung
MB=MC(M là trung điểm BC)
Từ 3 điều trên, ta có tam giác AMB=tam giác AMC=>góc B=góc C
b/ Ta có tam giác AMB=tam giác AMC=>góc BAM=góc CAM=>AM là tia phân giác của góc BAC
c/ Ta có tam giác AMB=tam giác AMC=>góc AMB=góc AMC mà tổng 2 góc này bằng 180 độ=>góc AMB=góc AMC=>AM vuông góc với BC
a, Xét tam giác AMB và tam giác AMC có
AB = AC (gt)
AM chung
MB = MC ( M là trung điểm BC )
=> tam giác AMB = tam giác AMC (c.c.c)
=>\(\widehat{BAM}=\widehat{CAM}\)
=> AM là phân giác góc BAC
b, Vì tam giác AMB = tam giác AMC (cmt)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Ta có : \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{AMB}+\widehat{AMB}=180^o\)
\(\Rightarrow\widehat{AMB}=90^o\)
\(\Rightarrow AM\perp BC\left(ĐPCM\right)\)
a) Xét tam giác ABC có : AB = AC
=> Tam giác ABC cân tại A
Mà AM là đường trung tuyến ứng với BC ( vì M là trung điểm của BC)
=>AM vừa là đường trung tuyến đồng thời là đường phân giác
Do đó : AM là tia phân giác của góc BAC(đpcm)
b)Vì tam giác ABC cần tại A ( theo câu a )
Nên đường phân giác AM đồng thời là đường cao
=> AM vuông góc với BC ( đpcm )