tìm tất cả các số nguyện x,y thỏa mãn:x+y/x^2-xy+y^2=3/7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........
x(2y+3) = y +1 => y+1 chia hết cho 2y +3
=> 2y + 2 chia hết cho 2y +3
=> 2y + 3 - 1 chia hết cho 2y + 3
=> -1 chia hết cho 2y +3
=> 2y + 3 = -1
2y +3 = -1 = > y = -2 => -x = -1 => x=1
2y + 3 = 1 => y = 1 => x = 0
Ta có : x .( 2y+ 3 ) = y + 1
=> ( y + 1 ) \(⋮\)( 2y + 3 )
=> \(\left(2y+2\right)⋮\left(2y+3\right)\)
=> ( 2y + 3 - 1 ) \(⋮\) ( 2y+ 3 )
=> - 1 \(⋮\) ( 2y + 3 )
=> ( 2y+ 3 ) \(\in\left\{1;-1\right\}\)
TH1 :
2y + 3 =-1 <=> y = -2
=> x = 1
TH2 :
2y + 3 = 1 <=> y = -1
=> x = 0
Vậy ta có các cặp số nguyên ( x , y ) thỏa mãn là : ( 0 , -1 ) ; ( 1 ; -2 )
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Ta có:
\(x^3+y^3-xy=7\)
\(\left(x+y\right)^3-3xy\left(x+y\right)-xy=7\)
Thay x+y = 3 ta dc:
\(3^3-9xy-xy=7\)
\(-10xy=-20\)
\(xy=2\)
Vậy, tập hợp x, y thoả mãn đaẻng thức là: {x,y thuộc R/xy=2}
Xét: \(x^2\ge0\Rightarrow x^4+2x^2+1\ge x^4+x^2+1=y^2\)
\(\Rightarrow\left(x^2+1\right)^2\ge y^2=x^4+x^2+1>x^4=\left(x^2\right)^2\)
Vậy số chính phương \(y^2\)bị kẹp giữa 2 số chính phương liên tiếp là \(\left(x^2\right)^2\)và\(\left(x^2+1\right)^2\)
Có xảy ra dấu "=" tại \(\left(x^2+1\right)^2\)nên trường hợp duy nhất cho y chính là \(y^2=\left(x^2+1\right)^2\)
Khi đó \(x^4+x^2+1=\left(x^2+1\right)^2\Leftrightarrow x^4+x^2+1=x^4+2x^2+1\Leftrightarrow x=0\Rightarrow y^2=1\Rightarrow y=\pm1\)
Vậy nghiệm nguyên của phương trình là \(\left(0;1\right),\left(0;-1\right)\)