Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-y^3+xy=1\)
\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)+xy=1\)
\(\Leftrightarrow\left(x-y\right)^3+\frac{1}{27}+3xy\left(x-y+\frac{1}{3}\right)=\frac{26}{27}\)
\(\Leftrightarrow\left(x-y+\frac{1}{3}\right)\left[\left(x-y\right)^2-\frac{x-y}{3}+\frac{1}{9}\right]+3xy\left(x-y+\frac{1}{3}\right)=\frac{26}{27}\)
\(\left(x-y+\frac{1}{3}\right)\left[\left(x-y\right)^2-\frac{x-y}{3}+\frac{1}{9}+3xy\right]=\frac{26}{27}\)
Đoạn này ez
ta có x3+y3=(x+y)(x2-xy+1)=9
mà x+y=3 => x2-xy+1=3 => x2-xy=2 => x(x-y)=2
x,y là số thực => x-y là số thực => x;x-y \(\inƯ_{\left(2\right)}=\left\{-2;-1;1;2\right\}\)
với x=-2 => không có giá trị y thỏa mãn
với x=-1 => không có giá trị y thỏa mãn
với x=1; x+y=3 => y=2
với x=2; x+y=3 => y=1
vậy (x;y)=(1;2);(2;1)
x + y = 3 => y = 3 - x
x3 + y3 = 9
<=> x3 + ( 3 - x )3 = 9
<=> x3 - x3 + 9x2 - 27x + 27 - 9 = 0
<=> 9x2 - 27x + 18 = 0
<=> 9( x2 - 3x + 2 ) = 0
<=> 9( x2 - x - 2x + 2 ) = 0
<=> 9[ x( x - 1 ) - 2( x - 1 ) ] = 0
<=> 9( x - 2 )( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Với x = 2 => 2 + y = 3 => y = 1
Với x = 1 => 1 + y = 3 => y = 2
Vậy các cặp số ( x ; y ) thỏa mãn là : ( 2 ; 1 ) , ( 1 ; 2 )
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Ta có:
\(x^3+y^3-xy=7\)
\(\left(x+y\right)^3-3xy\left(x+y\right)-xy=7\)
Thay x+y = 3 ta dc:
\(3^3-9xy-xy=7\)
\(-10xy=-20\)
\(xy=2\)
Vậy, tập hợp x, y thoả mãn đaẻng thức là: {x,y thuộc R/xy=2}