Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC .Bài 26...
Đọc tiếp
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
a, Ta có: \(AB=\dfrac{1}{2}AC\Leftrightarrow AC=2AB\)
\(\Delta ABC\) có: \(\hat{BAC}=90^o\)
\(\Rightarrow AB^2+AC^2=BC^2\)(định lý Py-ta-go)
hay \(AB^2+4AB^2=5^2\)
\(5AB^2=25\)
\(AB^2=5\)
\(AB=\sqrt{5}\left(cm\right)\Rightarrow AC=2\sqrt{5}\left(cm\right)\left(AC=2AB\right)\)
b, Áp dụng hệ thức lượng vào \(\Delta ABC\) ta được \(HC=4\left(cm\right)\)
Áp dụng định lý Py-ta-go vào \(\Delta AHC\) và \(\Delta AHB\) ta được \(AH=2\left(cm\right)\)\(\Rightarrow HI=1\left(cm\right)\)và \(BH=1\left(cm\right)\)
\(\Delta CBD\) có: HI // BD \(\left(\perp BC\right)\)\(\Rightarrow\dfrac{HI}{BD}=\dfrac{CH}{BC}\)(hệ quả định lý Ta-lét) \(\Leftrightarrow\dfrac{1}{BD}=\dfrac{4}{5}\Rightarrow BD=1,25\left(cm\right)\)
Tứ giác BHID có: HI // BD (cmt) nên là hình thang
\(\Rightarrow S_{BHID}=\dfrac{\left(HI+BD\right).BH}{2}=\dfrac{\left(1+1,25\right).1}{2}=1,125\left(cm^2\right)\)P.S: Có vẻ không đúng lắm, kiểm tra lại nhé
c, Xét \(\Delta CEB\) và \(\Delta CAB\) ta có:
CB chung
EB = AB = bán kính (B)
CE = CA = bán kính (C)
\(\Rightarrow\Delta CEB=\Delta CAB\left(c-c-c\right)\)\(\Rightarrow \hat{BEC}=\hat{BAC}=90^o\)\(\Rightarrow BE\perp EC\)
(B;BA) có: \(BE\perp EC,BE=R\Rightarrow\)CE là tiếp tuyến của (B;BA)