K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

PT có nghiệm chung khi \(x^2+ax+8=x^2+x+a\)

                                    \(\Leftrightarrow ax+8-x-a=o\)

                                     \(\Leftrightarrow a\left(x-1\right)-\left(x-1\right)+7=0\)

                                     \(\Leftrightarrow\left(x-1\right)\left(a-1\right)=-7\)

-7=(-1).7=(-7).1

TH1\(\hept{\begin{cases}x-1=-1\\a-1=7\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\a=8\end{cases}}\)thế vào \(x^2+x+a=0\)(thế vào pt trên cx đc nha) có: 8=0(vô lý) loại

TH2 \(\hept{\begin{cases}x-1=-7\\a-1=1\end{cases}}\)(giải như trên) (loại)

TH3\(\hept{\begin{cases}x-1=7\\a-1=-1\end{cases}}\)(loại)

Th4\(\hept{\begin{cases}x-1=1\\a-1=-7\end{cases}}\)=>\(\hept{\begin{cases}x=2\\a=-6\end{cases}}\)thế vào \(x^2+x+a=0\) có  \(2^2+2-6=0\) thỏa mãn

Vậy với a=-6 thì 2 pt có nghiệm chng

    

Ta có: \(\left(x-2\right)\left(x^2-7x+41\right)=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Thay x=2 vào (2), ta được:

\(2^2-2m+m^2-5m+8=0\)

\(\Leftrightarrow m^2-7m+12=0\)

\(\Leftrightarrow\left(m-3\right)\left(m-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=4\end{matrix}\right.\)

Vậy: Có 2 giá trị nguyên của m thỏa mãn hai phương trình có nghiệm chung

12 tháng 1 2017

Ý tưởng như sau:

\(x^2+ax+1=0\) và \(x^2+bx+c=0\) là 2 pt có nghiệm chung nên hệ pt sau có nghiệm (nhận xét quan trọng):

\(\hept{\begin{cases}x^2+ax+1=0\\x^2+bx+c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)x=c-1\\x^2+ax+1=0\end{cases}}\)

Do \(a\ne b\) nên thay \(x=\frac{c-1}{a-b}\) xuống pt dưới được: \(\left(\frac{c-1}{a-b}\right)^2+\frac{a\left(c-1\right)}{a-b}+1=0\)

Hay \(\left(c-1\right)^2+a\left(c-1\right)\left(a-b\right)+\left(a-b\right)^2=0\)

-----

\(x^2+x+a=0\) và \(x^2+cx+b=0\) có nghiệm chung thì hệ pt sau có nghiệm:

\(\hept{\begin{cases}x^2+x+a=0\\x^2+cx+b=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(c-1\right)x=a-b\\x^2+x+a=0\end{cases}}}\)

Do \(a\ne b\) nên \(c\ne1\), thay \(x=\frac{a-b}{c-1}\) xuống pt dưới được:

\(\left(\frac{a-b}{c-1}\right)^2+\frac{a-b}{c-1}+a=0\) hay \(\left(a-b\right)^2+\left(a-b\right)\left(c-1\right)+a\left(c-1\right)^2=0\)

-----

Đặt \(x=a-b,y=c-1\)

Ta có hệ: \(\hept{\begin{cases}x^2+axy+y^2=0\\x^2+xy+ay^2=0\end{cases}\Rightarrow\left(a-1\right)xy=\left(a-1\right)y^2}\)

Nhớ rằng \(a=1\) không xảy ra vì khi đó \(x^2+ax+1=0\) vô nghiệm.

Vậy \(a\ne1\), do \(y\ne0\) nên \(x=y\). Tức là \(a-b=c-1\).

Tới đây quay lại mấy cái nghiệm chung sẽ thấy các nghiệm chung đều là \(1\).

Mà như vậy thì \(b+c=-1,a=-2\) nên \(a+b+c=-4\)

26 tháng 3 2019

Chọn đáp án B

Gọi x 0 là nghiệm thực chung của 2 phương trình

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ x 0 2 + a x 0  + 1 =  x 0 2 -  x 0  - a ⇔ (a + 1) x 0 = -(a + 1) ⇔  x 0  = -1

Thay  x 0  = -1 vào phương trình  x 0 2 + a  x 0  + 1 = 0 tìm được a = 2

4 tháng 6 2021

\(x^3+3x^2+2x=0\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

\(\left(x+1\right)\left(x^2+2x+1+a\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+1=-a\end{matrix}\right.\)

Vì 2 pt đã có nghiệm chung là \(-1\Rightarrow\) nghiệm của pt \(\left(x+1\right)^2=-a\) phải khác \(0,2\)

\(\Rightarrow a\ne-1;-9\)

(cách mình là vậy chứ mình cũng ko chắc là có đúng ko nữa)

 

4 tháng 6 2021

sửa lại khúc nghiệm của pt \(\left(x+1\right)^2-a\) phải khác \(0,-2\)và \(a\ne-1\)

lại giùm mình,mình quên dấu - nên a phía dưới hơi bị lỗi

 

 

24 tháng 2 2018

a) ax^2 + bx + c = 0 

Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. 

∆ > 0 
=> b^2 - 4ac > 0 

x1 + x2 = -b/a > 0 
=> b và a trái dấu 

x1.x2 = c/a > 0 
=> c và a cùng dấu 

Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 

∆ = b^2 - 4ac >0 

x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 

x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 

=> phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 

Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. 

b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. 

x1 + x2 ≥ 2√( x1.x2 ) 
x3 + x4 ≥ 2√( x3x4 ) 

=> x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) 

Tiếp tục côsi cho 2 số không âm ta có 

√( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) 

Theo a ta có 

x1.x2 = c/a 
x3.x4 = a/c 

=> ( x1.x2 )( x3.x4 ) = 1 

=> 2√[√( x1.x2 )( x3.x4 ) ] = 2 

Từ (#) và (##) ta có đúng k bn

2 tháng 7 2017

Gọi m là nghiệm chung của 2 phương trình thì ta có:

\(\hept{\begin{cases}m^2+am+6=0\\m^2+bm+12=0\end{cases}}\)

\(\Rightarrow2m^2+\left(a+b\right)m+18=0\)

Để phương trình có nghiệm thì

\(\Delta=\left(a+b\right)^2-144\ge0\)

\(\Leftrightarrow\left|a+b\right|\ge12\)

Ta lại có:

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\ge12\)

Tới đây thì đơn giản rồi nên b tự làm nhé.

1 tháng 7 2017

m ở đâu ra.