Cho hinh lăng trụ A'B'C' có đáy ABC là tam giác đều cạnh a, hình chiếu của A' trên (ABC) là trung điểm đoạn thẳng AB. Biết AA’ = 2a. Thể tích của khối lăng trụ A'B'C'ABC là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta dễ dàng chứng minh được A A ' / / B C C ' B '
⇒ d A A ' ; B C = d A A ' ; B C C ' B ' = d A ; B C C ' B '
Gọi G là trọng tâm của tam giác ABC. Suy ra A ' G ⊥ A B C .
Ta có S Δ A B C = a 2 3 4
⇒ V A B C . A ' B ' C ' = A ' G . S Δ A B C ⇔ A ' G = V A B C . A ' B ' C ' S Δ A B C = a 3 3 4 : a 2 3 4 = a
Lại có
A M = a 3 2 ⇒ A G = 2 3 A M = a 3 3 ⇒ A A ' = A ' G 2 + A G 2 = 2 a 3 3
Ta luôn có V A ' . A B C = 1 3 V A B C . A ' B ' C ' = 1 3 . a 3 3 4 = a 3 3 12 .
Mà V A B C . A ' B ' C ' = V A ' . A B C + V A ' . B C C ' B '
⇒ V A ' . B C C ' B ' = V A B C . A ' B ' C ' − V A ' . A B C = a 3 3 4 − a 3 3 12 = a 3 3 6 .
Gọi M,M' lần lượt là trung điểm của BC và B'C'. Ta có B C ⊥ A M , B C ⊥ A ' G ⇒ B C ⊥ A M M ' A ' ⇒ B C ⊥ M M ' . Mà M M ' / / B B ' nên B C ⊥ B B ' ⇒ B C C ' B ' là hình chữ nhật
⇒ S B C C ' B ' = B B ' . B C = 2 a 3 3 . a = 2 a 2 3 3 .
Từ
V A ' . B C C ' B ' = 1 3 d A ' ; B C C ' B ' . S B C C ' B ' ⇔ d A ' ; B C C ' B ' = 3 V A ' . B C C ' B ' S B C C ' B '
⇒ d A ' ; B C C ' B ' = a 3 3 2 : 2 a 2 3 3 = 3 a 4 . Vậy d A A ' ; B C = 3 a 4 .
Đáp án D
Ta có d ( AA ' , B C ) = d ( A A ' , ( B B ' C ' C ) ) = d ( A ' , ( B B ' C ' C ) )
Gọi M và M’ lần lượt là trung điểm BC và B’C’, G là trọng tâm của tam giác ABC
Theo giả thiết ta có B C ⊥ A M B C ⊥ A ' G ⇒ B C ⊥ ( A A ' G ) ⇒ B C ⊥ A A ' , nên tứ giác BB’C’C là hình chữ nhật có cạnh BC = a
Vì
V A ' A B C = 1 3 A ' G . S Δ A B C = 1 3 V L T = a 3 3 12 ⇒ A ' G = a ⇒ A A ' = A G 2 + A ' G 2 = 2 a 3
Có
V A ' B B ' C ' C = 2 3 V L T = a 3 3 6 = 1 3 d ( A ' , ( B B ' C ' C ) ) . S B B ' C ' C ⇒ d ( A ' , ( B B ' C ' C ) ) = 3 a 2
Đáp án D
Ta có d ( AA ' , B C ) = d ( A A ' , ( B B ' C ' C ) ) = d ( A ' , ( B B ' C ' C ) )
Gọi M và M’ lần lượt là trung điểm BC và B’C’, G là trọng tâm của tam giác ABC
Theo giả thiết ta có B C ⊥ A M B C ⊥ A ' G ⇒ B C ⊥ ( A A ' G ) ⇒ B C ⊥ A A ' , nên tứ giác BB’C’C là hình chữ nhật có cạnh BC = a
Vì
V A ' A B C = 1 3 A ' G . S Δ A B C = 1 3 V L T = a 3 3 12 ⇒ A ' G = a ⇒ A A ' = A G 2 + A ' G 2 = 2 a 3
⇒ S B B ' C ' C = 2 a 2 3
Có V A ' B B ' C ' C = 2 3 V L T = a 3 3 6 = 1 3 d ( A ' , ( B B ' C ' C ) ) . S B B ' C ' C ⇒ d ( A ' , ( B B ' C ' C ) ) = 3 a 2
Chọn D
Chọn B
Ta có A ' G ⊥ A B C nên A ' G ⊥ B C ; B C ⊥ A M ⇒ B C ⊥ M A A '
Kẻ M I ⊥ A A ' ; B C ⊥ I M nên d A A ' ; B C = I M = a 3 4
Kẻ G H ⊥ A A ' , ta có
Do \(AA'\text{/ / }CC'\Rightarrow AA'\) tạo với (ABC) một góc \(45^o\)
Mà \(A'H\text{⊥}\left(ABC\right)\Rightarrow\widehat{A'AH}\) là góc giữa \(AA'\) và ( ABC)
\(\Rightarrow\widehat{A'AH=45^o\Rightarrow}\Delta A'AH\) vuông cân tại H
\(\Rightarrow A'H=AH=\dfrac{AB}{2}=\dfrac{a}{2}\)
\(^SABC=\dfrac{a^2\sqrt{3}}{4}=V=^SABC.^{A'H}=\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3.\sqrt{3}}{8}\)