K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

Ta có: (x+y)6 + (x-y)6 = \(\left(x+y\right)^{2^3}+\left(x-y\right)^{2^3}\)

=\(\left(\left(x+y\right)^2+\left(x-y\right)^2\right)\left(\left(x+y\right)^4-\left(x+y\right)^2\left(x-y\right)^2+\left(x-y\right)^4\right)\)

= 2(x2+y2)\(\left(\left(x+y\right)^4-\left(x+y\right)^2\left(x-y\right)^2+\left(x-y\right)^4\right)\)

Cái trên chia hết cho G(x) vì có thừa số 2(x2+y2) chia hết

22 tháng 11 2018

a. đặt tính

x4-2x3-2x2+ax+b /  x2-3x+2

x4-3x3                     x2+x+1

     x3-2x2+ax+b

     x3-3x2+2x

          x2+(a-2)x+b

          x2-3x+2

=> để f(x) chia hết cho g(x) =>\(\orbr{\orbr{\begin{cases}a-2=-3=>a=-1\\b=2\end{cases}}}\)

b. làm tương tự câu a

10 tháng 3 2019

Ta có :\(x-y⋮11\Rightarrow3x\left(x-y\right)⋮11\Rightarrow M⋮11\)

Ta có: \(x-y⋮11\Rightarrow\left(x-y\right)\left(x+y\right)⋮11\Rightarrow x\left(x+y\right)-y\left(x+y\right)⋮11\Rightarrow x^2+xy-xy-y^2⋮11\Rightarrow x^2-y^2⋮11\)

\(\Rightarrow-1\left(x^2-y^2\right)⋮11\Rightarrow y^2-x^2⋮11\Rightarrow N⋮11\)

Do đó\(\hept{\begin{cases}M⋮11\\N⋮11\end{cases}}\Rightarrow M-N⋮11\)(đpcm)

10 tháng 3 2019

Vi x-y chia het cho 11 => 3x.(x-y) chia het cho 11=>M chia het cho 11 (1)

y^2-x^2=(y+x)(y-x).Vi x-y chi het cho 11 => y-x chia het cho11 =>(y+x)(y-x) chia het cho11<=> y^2-x^2 chia het cho 11

=> N chia het cho 11 (2)

Từ (1) và (2)=> M -N chia hết cho 11

=> Đpcm

AH
Akai Haruma
Giáo viên
27 tháng 11 2019

Lời giải:
a)

\(f(0)=\frac{-0}{2}+3=3\)

$f(1)=\frac{-1}{2}+3=\frac{5}{2}$

$f(-1)=\frac{-(-1)}{2}+3=\frac{7}{2}$

$f(2)=\frac{-2}{2}+3=2$

$f(6)=\frac{-6}{2}+3=0$

$f(\frac{1}{2})=\frac{-\frac{1}{2}}{2}+3=\frac{11}{4}$

b)

\(f(x)=2x-3\Rightarrow f(x+1)=2(x+1)-3=2x-1\)

Do đó: \(f(x+1)-f(x)=2x-1-(2x-3)=2\)

c)

\(f(2)=3.2-9=-3\)

\(f(-2)=3(-2)-9=-15\)

\(g(0)=3-2.0=3\)

\(g(3)=3-2.3=-3\)