Chứng tỏ n+ 1 và 3 n + 4 ( n thuộc N ) là hai số nguyên tố cùng nhau
Giúp mk với các thiên tài ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(n+3,2n+5)
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)
=> (2n + 6) - (2n + 5) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
=> ƯCLN(n+3,2n+5) = 1
=> n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau
Gọi d là ƯC(n+3;2n+5)
=> 2(n+3) - (2n+5) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ........
Gỉa sử n=3=>3n+1=3.3+1=9+1=10
4n+2=4.3+2=12+2=14
mà (10,14)=2
=>Vô lí
Bạn xem lại đề nha.
Gọi d là ước chung của n + 1 và 3n + 4.
Ta có n + 1 ⋮ d nên 3( n+1) ⋮ d hay 3n + 3 ⋮ d
Lại có: 3n + 4 ⋮ d.
Suy ra (3n + 4) - (3n + 3) ⋮ d hay 1 ⋮ d
Do đó, d = 1.
Vậy n + 1 và 3n + 4 là hai số nguyên tố cùng nhau.
gọi UCLN(2n+3, 3n+5) là d
ta có 2n+5 chia hết cho d => 3(2n+3) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+5 chia hết cho d => 2(3n+5) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+3, 3n+5 ngtố cùng nhau(đpcm)
Gọi UCLN(m; mn + 8) là d
=> m chia hết cho d => mn chia hết cho d
và mn + 8 chia hết cho d
Do đó 8 chia hết cho d => d thuộc {1; 2; 4; 8}
Mà m lẻ và m chia hết cho d => d lẻ
Do đó d = 1
=> UCLN(m; mn + 8) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
Gọi d là ước chung lớn nhất của n + 1 và 3n + 4
Ta có: \(n+1⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)
Mà \(3n+4⋮d\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\Rightarrow1⋮d\)
=> \(d\inƯ\left(1\right)\Rightarrow d=1\)
=> n + 1 và 3n + 4 nguyên tố cùng nhau (đpcm)