K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2022

Xét tứ giác EBGO có

góc EBG=góc OEB=góc OGB=90 độ

nên EBGO là hình chữ nhật

=>góc EOG=90 độ

Xét tứ giác OGCF có

góc OGC=góc OFC=góc GCF=90 độ

nên OGCF là hình chữ nhật

=>góc FOG=90 độ

=>góc EOF=180 độ

=>E,O,F thẳng hàng

15 tháng 8 2021

a) Chứng minh được BF = DH \Rightarrow BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).

b) Dễ thấy \Delta BEF=\Delta CFG (cgv – cgv) nên EF = FG.

Tương tự, FG = GH, GH = HE \Rightarrow EF = FG = GH = HE. Suy ra EFGH là hình vuông.

Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.

c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3.

17 tháng 8 2021

a) Chứng minh được BF = DH \Rightarrow BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).

b) Dễ thấy \Delta BEF=\Delta CFG (cgv – cgv) nên EF = FG.

Tương tự, FG = GH, GH = HE \Rightarrow EF = FG = GH = HE. Suy ra EFGH là hình vuông.

Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.

c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3.

5 tháng 11 2018

A B C D E F M N

Gọi N là trung điểm của BD.

Xét \(\Delta\)ABC có: E là trung điểm AB; F là trung điểm BC => EF là đương trung bình trong \(\Delta\)ABC

=> EF // AC. Mà AC vuông góc BD. Nên EF vuông góc BD hay ND vuông góc EF   (1)

Ta thấy: FN là đường trung bình \(\Delta\)BCD => FN // CD

Do EM vuông góc CD nên EM vuông góc FN. Tương tự, ta có: FM vuông góc EN

Xét \(\Delta\)ENF có: EM vuông góc FN; FM vuông góc EN => M là trực tâm \(\Delta\)ENF

=> NM vuông góc EF   (2)

Từ (1) và (2) => 3 điểm D;N;M thẳng hàng. Lại có N là trung điểm BD => B;M;D thẳng hàng (đpcm).