K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành

2 tháng 8 2021

Ở đâu vậy bạn

29 tháng 8 2021

ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC

Xét tam giác AOE và tam giác COF ta có

góc AOE = góc COF (2 góc đối xừng)

AO=OC

góc DAC= góc ACB

=> tam giác AOE = tam giác COF=> OE=OF

CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH

Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O

lại có OE=OF
          OH=OK

=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)

5 tháng 11 2018

A B C D E F M N

Gọi N là trung điểm của BD.

Xét \(\Delta\)ABC có: E là trung điểm AB; F là trung điểm BC => EF là đương trung bình trong \(\Delta\)ABC

=> EF // AC. Mà AC vuông góc BD. Nên EF vuông góc BD hay ND vuông góc EF   (1)

Ta thấy: FN là đường trung bình \(\Delta\)BCD => FN // CD

Do EM vuông góc CD nên EM vuông góc FN. Tương tự, ta có: FM vuông góc EN

Xét \(\Delta\)ENF có: EM vuông góc FN; FM vuông góc EN => M là trực tâm \(\Delta\)ENF

=> NM vuông góc EF   (2)

Từ (1) và (2) => 3 điểm D;N;M thẳng hàng. Lại có N là trung điểm BD => B;M;D thẳng hàng (đpcm).

22 tháng 10 2021

Bài 2: 

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)

Do đó: ADME là hình chữ nhật