K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2021

<=> y(x+3) =66 

hay y ; x+3 thuộc ước của 66 

Ư(66) = { 1;2;3;6;11 ;22 ;33;66} 

Ta có bảng sau 

y123611223366
x+3663322116321
y123611223366
x633019830//

 Vậy \hept{y=1x=63;

20 tháng 1 2016

a. x=y=0

b.x=0;y=-1 hoac 1

y=0;x=-1 hoac 1

20 tháng 1 2019

xy - 3x + 19 = 0

x(y - 3) = 0

=> x = 0 hoặc y - 3 = 0

Mk làm đc tới đây thôi mà ko biết đúng ko nữa, xin lỗi bn nhé!

20 tháng 1 2019

Í mk lộn rồi nha, mk làm sai rồi

6 tháng 8 2016

Đặt x = 4k

y = 7k

=> 4k.7k = 112

=> 28.k^2 = 112

=> k^2 = 112 : 28 = 4

=> k = 2

=> x = 4.2 = 8

y = 7.2 = 14

20 tháng 10 2016

14 nha

26 tháng 3 2020

dể thôi mà

26 tháng 3 2020

Chị xem hướng dẫn giải và đáp án bên dưới nha cj,em mới học lớp 6 à !

Hướng dẫn giải và đáp án : 

- Trước hết ta chứng minh : Nếu a \(\inℕ,\sqrt{a}\inℚ\)thì \(\sqrt{a}\inℕ\).Thật vậy

vì \(\sqrt{a}\inℚ\)nên \(\sqrt{a}=\frac{m}{n}\left(m,n\inℕ,n\ne0,\left(m,n\right)=1\right)\).Ta có : 

\(a=\frac{m^2}{n^2}\Leftrightarrow a.n^2=m^2\Rightarrow m^2⋮n^2\Rightarrow n=1\Rightarrow a=m\inℕ\)( vì (m,n) = 1 ) 

-Vận dụng kết quả trên ta lần lượt chứng minh : \(\sqrt{xy}\inℕ,\sqrt{x}\inℕ,\sqrt{y}\inℕ\)

Chứng minh : 

(1) \(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-2016\Leftrightarrow x+y+2\sqrt{xy}=2016^2-2.2016\sqrt{xy}+xy\)

\(\Leftrightarrow\sqrt{xy}=\frac{2016^2+xy-x-y}{4034}\inℚ\).Đặt k = \(\sqrt{xy}\),thay vào (1) ta được : 

\(\sqrt{x}=k-2016-\sqrt{y}\Leftrightarrow x=\left(k-2016^2\right)-2.\left(k-2016\right)\sqrt{y}+y\)

\(\Leftrightarrow\sqrt{y}=\frac{\left(k-2016\right)^2+y-x}{2.\left(k-2016\right)}\inℚ\).Ta có : 

\(\sqrt{x}+\sqrt{y}+2016=\sqrt{xy}\Leftrightarrow\left(\sqrt{x}-1\right).\left(\sqrt{y}-1\right)=2017.\)Vì \(\sqrt{x}-1\inℤ,\sqrt{y}-1\inℤ\)nên \(\sqrt{x}-1,\sqrt{y}-1\)là các ước của 2017

Vì 2017 là số nguyên tố nên ta có các trường hợp : 

1)\(\hept{\begin{cases}\sqrt{x}-1=1\\\sqrt{y}-1=2017\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=2018^2\end{cases}}}\)

2) \(\hept{\begin{cases}\sqrt{x}-1=2017\\\sqrt{y}-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2018^2\\y=4\end{cases}}}\)

Vậy các cặp số nguyên (x,y ) thỏa mãn là :(20182 , 4) ; ( 4,20182).

16 tháng 7 2018

5xy+5x+y=5

5xy-5x-5+y=0

5(xy-x-1)+y=0

=>5(xy-x-1)=0 và y=0

=>xy-x-1=0 và y =0

thay y=0 vào xy-x-1=0

ta có: x.0-x-1=0 =>x=-1

vậy x=-1,y=0

hình như sai,ta cx ko rõ,nếu sai thì xin lỗi nhóe