Cho M= 2 + 22+23+.....+220 Chứng tỏ rằng M chia hết cho 5
Giải chi tiết nha!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)
A=2+22+23+...+220
a) Vì cơ số của mỗi lũy thừa là 2 => A chia hết cho 2
b)A=2+22+23+...+220
A=(2+22)+(23+24)+...+(219+220 )
A=(2+22)+23(2+22)+...+219(2+22 )
A=6+23x6+...+219x6
A=6x(1+23+...+219)
Vì 6 chia hết cho 3=> A chia hết cho 3
HT
Áp dụng hàng đơn vị , chia từng cặp , như vậy mỗi cặp có hàng đơn vị sẽ có dạng 1 + 2 + 3 + 4 + ..... + 10 = 55 và sẽ chia hết cho 5 .
Vậy M hoàn toàn chia hết cho 5 .
Tưởng ghi kiểu 2^1 + 2^2 + 2^3 + ... + 2^20 chứ ai dè ra đề bài dễ quá ta XD
A = 2 + 22 + 23 + 24 + ... + 219 + 220
A = (2 + 22) + (23 + 24) +... + (219 + 220)
A = 2.(1+2) + 23.(1 + 2) +... + 219.(l + 2)
A = 2.3 + 23.3 +...+ 219.3 Do đó A chia hết cho 3
A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)
A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)
A=\(3.1+3.2^2+...+3.2^{19}\)
A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)
Vậy A\(⋮3\)
A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)
A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)
A=3.1+3.22+...+3.2193.1+3.22+...+3.219
A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3
NÊN A⋮3
M = \(2+2^2+2^3+...+2^{20}\)
M = \(2\left(1+2+2^2+2^3\right)\)+ ..... + \(2^{17}\left(1+2+2^2+2^3\right)\)
M = 2 . 15 + .... + \(2^{17}.15\)
M = 15 ( 2 + ... + \(2^{17}\)) chia hết cho 5 ( Do 15 chia hết cho 5)
ta có :
M=(2+22 +23+24)+....+217+218+219+220
M=2*1+2*2+22*2+23*2+....+217*1+217*2+217*22+217*23
M=2*(1+2+2 mũ 2+2 mũ 3)+...+2 mũ 17*(1+2+2 mũ 2 +2 mũ 3)
M=2*15+...+217*15
M=(2+...+2 mũ 17)*15
vì 15 chia het cho 5 nen bieu thuc tren chia het cho 5