K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

Điểm F có lẽ hơi thừa đấy.

Bạn c/m K là trực tâm của tam giác AEC \(\Rightarrow AK\perp EC\Rightarrow AI\perp EC\Rightarrow\widehat{AIC}=90^0\)

Gọi O là giao điểm của AC và BD thì O là trung điểm của AC và BD và AC = BD

Tam giác AIC vuông tại I có IO là trung tuyến ứng với cạnh huyền AC

\(\Rightarrow IO=\frac{1}{2}AC\Rightarrow IO=\frac{1}{2}BD\)

Tam giác BID có IO là trung tuyến và \(IO=\frac{1}{2}BD\Rightarrow\Delta BID\)vuông tại I

\(\Rightarrow S_{BID}=\frac{1}{2}.BI.ID\)(1)

Chứng minh được BDEC là hình bình hành nên \(BD//CE\)

Mà \(AI\perp CE\left(cmt\right)\Rightarrow IM\perp BD\)

Tam giác BID có đường cao IM \(\Rightarrow S_{BID}=\frac{1}{2}IM.BD\) (2)

Từ (1) và (2) có: \(IM.BD=DI.BI\)

29 tháng 9 2016

D E A B C M F K S O Q

a/ Dễ thấy ABDC là hình chữ nhật dựa theo dấu hiệu nhận biết.

b/ Dễ thấy.

c/ Ta có EA = AB ; BM = CM => AM là đường trung bình tam giác BCE => AM // CE =>  AECM là hình thang

d/ Chứng minh được AE = CD ; AE // CD => AECD là hình bình hành

e/ Vì AECD là hình bình hành nên AD // CF => góc CFD = góc FDA (1)

Mặt khác, AM // CE (AMCE là hình thang) mà BF vuông góc với CE => BF vuông góc AM

=> FM là đường cao của tam giác vuông FAD . Từ đó dễ dàng suy ra Góc AFB = góc FDA (2)

Từ (1) và (2) suy ra góc CFD = góc AFB mà góc CFD + góc DFB = 90 độ

=> góc AFB + góc DFB = góc AFD = 90 độ 

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K