Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Dễ thấy ABDC là hình chữ nhật dựa theo dấu hiệu nhận biết.
b/ Dễ thấy.
c/ Ta có EA = AB ; BM = CM => AM là đường trung bình tam giác BCE => AM // CE => AECM là hình thang
d/ Chứng minh được AE = CD ; AE // CD => AECD là hình bình hành
e/ Vì AECD là hình bình hành nên AD // CF => góc CFD = góc FDA (1)
Mặt khác, AM // CE (AMCE là hình thang) mà BF vuông góc với CE => BF vuông góc AM
=> FM là đường cao của tam giác vuông FAD . Từ đó dễ dàng suy ra Góc AFB = góc FDA (2)
Từ (1) và (2) suy ra góc CFD = góc AFB mà góc CFD + góc DFB = 90 độ
=> góc AFB + góc DFB = góc AFD = 90 độ
a: Xét tứ giác ADHB có
\(\widehat{DAB}=\widehat{ADH}=\widehat{BHD}=90^0\)
Do đó: ADHB là hình chữ nhật
mà AB=AD
nên ADHB là hình vuông