cho a,b,c là số khác 0 thỏa mãn a+b-c/c = a-b+c/b = (-a)+b+c/a .tính giá trị của biểu thức A=abc/(a+b)(b+c)(c+a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
\(\Leftrightarrow\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
TH1 : \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\Leftrightarrow M=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1}\)
TH2 : \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=1\)
\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\Rightarrow\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\Rightarrow}M=\frac{2c.2b.2a}{abc}=8}\)
Xét a+b+c=0 thì A=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)
Xét a+b+c\(\ne0\).Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a.a.a}=8\)
Vậy.................................
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)
Do đó:
\(\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)
Thay a+b=2c;b+c=2a và c+a=2b vào biểu thức \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+b\right)}{abc}\), ta được:
\(P=\dfrac{2a\cdot2b\cdot2c}{abc}=\dfrac{8abc}{abc}=8\)
Vậy: P=8
Ta có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\) = \(\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}\) (t/c dãy tỉ số bằng nhau)
hay \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=1\) (1)
Ta cũng có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+b+c-a}{a+c}\) (t/c dãy tỉ số bằng nhau)
hay \(\dfrac{a+b-c}{c}=\dfrac{2b}{a+c}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{2b}{a+c}=1\) \(\Leftrightarrow\) a + c = 2b (*)
Tương tự ta cũng có: a + b = 2c (**); b + c = 2a (***)
Thay (*); (**); (***) vào P ta được:
P = \(\dfrac{2a.2b.2c}{abc}\) = 2.2.2 = 8
Vậy P = 8
Chúc bn học tốt!
Th1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{\left(-a\right)+b+c}{a}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{\left(-a\right)+b+c}{a}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào b/t A. ta có:
\(A=\frac{aaa}{\left(a+a\right).\left(a+a\right).\left(a+a\right)}=\frac{aaa}{2a.2a.2a}=\frac{aaa}{8aaa}=\frac{1}{8}\)
th2: a+b+c = 0
=> a+b=-c
b+c=-a
c+a=-b
thay a+b=-c, b+c=-a, c+a=-b vào b/t A ta có:
\(A=\frac{abc}{\left(-c\right).\left(-a\right).\left(-b\right)}=-1\)