K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2020

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)

Do đó: 

\(\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

Thay a+b=2c;b+c=2a và c+a=2b vào biểu thức \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+b\right)}{abc}\), ta được: 

\(P=\dfrac{2a\cdot2b\cdot2c}{abc}=\dfrac{8abc}{abc}=8\)

Vậy: P=8

17 tháng 12 2020

Ta có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\) = \(\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}\) (t/c dãy tỉ số bằng nhau)

hay \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=1\) (1)

Ta cũng có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+b+c-a}{a+c}\) (t/c dãy tỉ số bằng nhau)

hay \(\dfrac{a+b-c}{c}=\dfrac{2b}{a+c}\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{2b}{a+c}=1\) \(\Leftrightarrow\) a + c = 2b (*)

Tương tự ta cũng có: a + b = 2c (**); b + c = 2a (***)

Thay (*); (**); (***) vào P ta được:

P = \(\dfrac{2a.2b.2c}{abc}\) = 2.2.2 = 8

Vậy P = 8

Chúc bn học tốt!

 

 

22 tháng 1 2018

Ta có: \(A=a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\)

\(\Rightarrow A=a^3+b^3+c^3-3abc=0\) \(\Rightarrow A=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Rightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Vì \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

Xét \(M=a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow2M=2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Rightarrow2M=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Rightarrow a-b=0;b-c=0;c-a=0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\) 

25 tháng 2 2022

oh no bài thứ nhất là dạng chứng minh cs đúng ko ,

ko thể nào là dạng tìm a,b,c đc-.-

25 tháng 2 2022

nó là 1 bài mà

NV
18 tháng 12 2020

TH1: \(a+b+c=0\Rightarrow P=\dfrac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)

TH2: \(a+b+c\ne0\)

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{a+c-b}{b}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\) 

\(\Rightarrow P=\dfrac{2a.2b.2c}{abc}=8\)

20 tháng 12 2020

TH1 : a + b + c ≠ 0

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b+b+c+a+c}{a+b+c}=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\a+c=2b\end{matrix}\right.\)

Khi đó \(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}=\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}=8\)

TH2 : a + b + c = 0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Khi đó \(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

20 tháng 12 2020

Xét 2 TH sau:

TH1: a+b+c=0

Khi đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\\ =-1\)

TH2: a+b+c khác 0

Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Suy ra: a+b=2c; b+c=2a; c+a=2b

Do đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\\ =8\)

20 tháng 12 2020

Xét 2 TH sau:

TH1: a+b+c=0

Khi đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\\ =-1\)

TH2: a+b+c khác 0

Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Suy ra: a+b=2c; b+c=2a; c+a=2b

Do đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\\ =8\)

27 tháng 12 2020

tham khảo nha =))

7 tháng 1 2021