K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

Do AB// CD=) \(\widehat{ABC}\)=\(\widehat{BC\text{D}}\) (Hai góc so le trong)   (*)

Do AB//CD=) \(\widehat{ABC}\)=\(\widehat{B\text{D}C}\) (Hai góc đồng vị)        (**)

Từ (*) và (**) =) \(\widehat{BC\text{D}}\)=\(\widehat{B\text{D}C}\) 

Mà \(\widehat{CB\text{D}}\)\(90^0\) 

=) Tam giác BCD là tam giác vuông cân tại B

=) BC = BD = 30 cm

Vậy BD = 30 cm

9 tháng 11 2018

cam ơn

12 tháng 4 2017

Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [A, C] Đoạn thẳng m: Đoạn thẳng [D, E] Đoạn thẳng n: Đoạn thẳng [B, D] Đoạn thẳng q: Đoạn thẳng [E, C] Đoạn thẳng r: Đoạn thẳng [H, D] B = (-3.4, 4.08) B = (-3.4, 4.08) B = (-3.4, 4.08) C = (1.64, 4.06) C = (1.64, 4.06) C = (1.64, 4.06) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm D: Giao điểm của j, k Điểm D: Giao điểm của j, k Điểm D: Giao điểm của j, k Điểm E: Giao điểm của c, l Điểm E: Giao điểm của c, l Điểm E: Giao điểm của c, l Điểm H: Giao điểm của p, i Điểm H: Giao điểm của p, i Điểm H: Giao điểm của p, i

Đặt tên các điểm như hình vẽ.

Xét tam giác DAC có DH là trung tuyến đồng thời đường cao nên DAC là tam giác cân tại D.

Vậy thì DA = DC và \(\widehat{DCA}=\widehat{DAC}\)

Lại có \(\widehat{DCA}=\widehat{ABC}\Rightarrow\widehat{DAC}=\widehat{ABC}\Rightarrow\widehat{EAC}=\widehat{ABD}.\)

Xét tam giác EAC và tam giác DBA có: 

EA = DB 

AC = BA

\(\widehat{EAC}=\widehat{DBA}\)

Vậy nên \(\Delta EAC=\Delta DBA\left(c-g-c\right)\Rightarrow CE=DA\)

Lại có DA = DC nên CE = CD hay tam giác DCE cân tại C (đpcm).

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

b: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có

KB=HC

\(\widehat{KBO}=\widehat{HCO}\)

Do đó:ΔOBK=ΔOCH

9 tháng 3 2022

1 lấy đâu ra kb=hc

16 tháng 3 2022

nhanh giúp mình với đang cần gấp

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: AH=12cm

c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

d: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

a: XétΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=BC/2=18(cm)

nên AH=24(cm)

12 tháng 7 2018

a, Xét t/g AHC và t/g DHC có:

AH = DH (gt)

góc AHC = góc DHC = 90 độ

HC chung

=> t/g AHC = t/g DHC (c.g.c) (đpcm)

b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:

AB2 + AC2 = BC2

=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82

=> AC = 8 (cm)

c, Xét t/g AHB và t/g DHE có:

AH = DH (gt)

góc AHB = góc DHE (đối đỉnh)

BH = EH (gt)

=> t/g AHB = t/g DHE (c.g.c) (đpcm)

=> góc HBA = góc DEH (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DE 

Mà AB _|_ AC

=> DE _|_ AC (đpcm)

d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)

Xét t/g AHB và t/g AHE có:

BH = BE (gt)

góc AHB = góc AHE = 90 độ

AH chung

=> t/g AHB = t/g AHE (c.g.c)

=> AB = AE (2 cạnh tương ứng) (2)

Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)

Từ (1),(2),(3) =>  AE + CD > BC (đpcm)