Khi xóa đi chữ số hàng chục và hàng đơn vị của một số có bốn chữ số được số mới. Tìm số lúc đầu biết tổng của hai số đó là 4618.
Giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số thứ nhất có dạng abc thì b = 2a ; (a<5)
Số thứ hai có dạng nmq thì m = 3n ; (n<4)
Tổng chia hết cho 12 tức chia hết cho 3 và cho 4.
Tổng là số chẵn có 3 chữ số có dạng hkh
Thương của TỔNG với 12 là số có 2 chữ số. Tổng 2 chữ số lớn hơn hàng đơn vị số thứ hai 1 đơn vị.
Ta có Tổng hai số có thể là :
252 : 12 = 21
444 : 12 = 32
636 : 12 = 53
696 : 12 = 58
828 : 12 = 69
888 : 12 = 74
Chỉ có thể chọn :
Với Tổng là 252 thì số thứ nhất có thể là : 12*, số thứ hai có thể là 13* => 120 và 132
Với Tổng là 636 thì số thứ nhất có thể là : 36*, số thứ hai có thể là 26* => 369 và 267
Lời giải:
Gọi số cần tìm là $\overline{abc}$ với $a,b,c$ là số tự nhiên, $a\neq 0$, $0\leq a,b,c\leq 9$
Theo bài ra ta có:
$\overline{abc}-\overline{ab}=771$
$\overline{ab}\times 10+c-\overline{ab}=771$
$\overline{ab}\times 9+c=771$
$c=771-9\times \overline{ab}=3\times (257-\overline{ab})$ nên $c$ chia hết cho $3$ nên $c=0,3,6,9$
Thử các giá trị trên ta có $\overline{ab}=85, c=6$
Vậy số cần tìm là $856$
Tổng các chữ số của số cần tìm là 7.3=21
Gọi số cần tìm là abc
Sau khi đổi chỗ chữ số hàng chục và hàng đơn vị ta được số acb
Theo đề bài ta có
abc=acb-36
100a+10b+c=100a+10c+b-36
10b+c=10c+b-36
9b=9c-36
b-c=4
→c<=5
Ta có bảng
c | 5 | 4 | 3 | 2 | 1 | 0 | |
b | 9 | 8 | 7 | 6 | 5 | 4 | |
a | 7 | 9 | 11(loại) | 13(loại) | 15(loại) | 17(loại) |
Số cần tìm là 795 và 984
Vậy số ban đầu là số nào ?
Bạn có thể ghi cho mình bước tìm số ban đầu được không .
Lời giải:
Gọi số cần tìm là $\overline{abcd}$ với $a,b,c,d$ là số tự nhiên với $a\neq 0$ và $0\leq a,b,c,d\leq 9$
Theo bài ra ta có:
$\overline{abcd}+\overline{ab}=4618$
$\overline{ab}\times 100+\overline{cd}+\overline{ab}=4618$
$\overline{ab}\times 101+\overline{cd}=4618$
$\overline{ab}\times 101=4618-\overline{cd}> 4618-99$
$\overline{ab}\times 101> 4519$
$\overline{ab}> 44,74$
$\Rightarrow a\geq 4$
Mặt khác, nếu $a\geq 5$ thì $\overline{abcd}\geq 5000$. Khi đó tổng của số ban đầu và số cũ không thể là $4618$
Vậy $a=4$
Ta có:
$\overline{4b}\times 101+\overline{cd}=4618$
$(40+b)\times 101+\overline{cd}=4618$
$40\times 101+b\times 101+\overline{cd}=4618$
$b\times 101+\overline{cd}=578$
$b\times 101=578-\overline{cd}< 578$
$\Rightarrow b< 5,72$
$b\times 101=578-\overline{cd}> 578-99=479$
$\Rightarrow b> 4,74
Do đó $b=5$
$\overline{cd}=578-b\times 101=578-5\times 101=73$
Vậy số cần tìm là $4573$
4573