Tìm GTLN hoặc GTNN
B = x . ( x - 1 ) . ( x + 2 ) . ( x - 3 ) - 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì là gtrị tuyệt đối => >=0
=> GTNN=0 khi x=-1/2
b) GTNN =1/9 <=> x=3/5
\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)
Dấu = xảy ra khi x=-1
Lời giải:
\(y'=\frac{5-x}{\sqrt{(x^2+5)^3}}=0\Leftrightarrow x=5\)
Lập bảng biến thiên với các chốt $x=-\infty, x=5; x=+\infty$ ta thấy hàm số có GTLN tại $x=5$
Đáp án D.
(x-1)(x-2)(x-3)(x-4)+15
=(x2-5x+4)(x2-5x+6)+15
Đặt t=x2-5x+4 ta có:
t(t+2)+15=t2+2t+15
=t2+2t+1+14=(t+1)2+14\(\ge\)14
Dấu = khi t=-1 => x2-5x+4=-1 =>x=\(\frac{5\pm\sqrt{5}}{2}\)
Vậy....
\(B=\left(x^2-x\right)\left(x^2-x-6\right)+9\)
\(=\left(x^2-x\right)^2-6\left(x^2-x\right)+9=\left(x^2-x-3\right)^2\ge0\)
Vậy GTLN của B là 0
Xin lỗi bạn, GTNN của A là 0 nhé.