có 2 điện trở giống nhau mắc song song và mắc vào hiệu điện thế 12v. lúc này cường độ dòng điện qua mạch chính là 0.8a. tính điện trở của mỗi mạch rẽ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(R=\dfrac{R1.R2}{R1+R2}=\dfrac{10.15}{10+15}=6\left(\Omega\right)\)
b. \(U=U1=U2=12\left(V\right)\)(R1//R2)
\(\left[{}\begin{matrix}I=U:R=12:6=2\left(A\right)\\I1=U1:R1=12:10=1,2\left(A\right)\\I2=U2:R2=12:15=0,8\left(A\right)\end{matrix}\right.\)
a,có \(R1//R2//R3\)
\(=>\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{10}+\dfrac{1}{20}+\dfrac{1}{20}\)
\(=>Rtd=5\left(om\right)\)
\(b,=>Im=\dfrac{U}{Rtd}=\dfrac{12}{5}=2,4A\)
\(=>U=U123=U1=U2=U3=12V\)
\(=>\left\{{}\begin{matrix}I1=\dfrac{U1}{R1}=\dfrac{12}{10}=1,2A\\I2=\dfrac{U2}{R2}=\dfrac{12}{20}=0,6A\\I3=\dfrac{U3}{R3}=\dfrac{12}{20}=0,6A\end{matrix}\right.\)
Cường độ dòng điện chạy qua mạch chính là:
Vì R 1 , R 2 , R 3 mắc song song với nhau nên U 1 = U 2 = U 3 = U
Cường độ dòng điện chạy qua từng mạch rẽ là:
a)\(R_1//R_2\)\(\Rightarrow R_{tđ}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{5\cdot10}{5+10}=\dfrac{10}{3}\Omega\)
b)\(U_1=U_2=U=12V\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{12}{5}=2,4A\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{12}{10}=1,2A\)
\(I=I_1+I_2=2,4+1,2=3,6A\)
c)Công sản ra của đoạn mạch:
\(A=UIt=12\cdot3,6\cdot10\cdot60=25920J=25,92kJ\)
Khi R1 mắc nối tiếp với R2 thì: ↔ R1 + R2 = 40Ω (1)
Khi R1 mắc song song với R2 thì:
Thay (1) vào (2) ta được R1.R2 = 300
Ta có: R2 = 40 – R1 → R1.(40 – R1) = 300 ↔ - R12 + 40R1 – 300 = 0 (*)
Giải (*) ta được: R1 = 30Ω; R2 = 10Ω hoặc R1 = 10Ω; R2 = 30Ω.
R 1 + R 2 = U / I = 40 ( R 1 . R 2 ) / ( R 1 + R 2 ) = U / I ’ = 7 , 5
Giải hệ pt theo R 1 ; R 2 ta được R 1 = 30 ; R 2 = 10
Hoặc R 1 = 10 ; R 2 = 30
\(R_{tđ}=R_1+R_2+\dfrac{U}{I}=40\Omega\)
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{U}{I'}=7,5\Omega\)
Giải theo hệ PT theo \(R_1;R_2\) ta được: \(R_1=30\Omega;R_2=10\Omega\)
Hoặc: \(R_1=10\Omega;R_2=30\Omega\)
a. Điên trở tương đương của đoạn mạch này là :
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{60.12}{60+12}=10\Omega\)
b. CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R}=\dfrac{2,4}{10}=0,24A\)
Vì \(R_1\)//\(R_2\) nên :
\(U=U_1=U_2=2,4V\)
CĐDĐ qua các đoạn mạch rẽ là :
\(I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{60}=0,04A\)
\(\Rightarrow I_2=0,24-0,04=0,2A\)
c. Vì điện trở \(R_3\) nt ( \(R_1\)//\(R_2\)) nên điện trở tương đương toàn mạch là :
\(R_{123}=R_{12}+R_3=10+16=26\Omega\)
\(\Rightarrow\) CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R_{123}}=\dfrac{2,4}{26}\approx0,1A\)
Vậy : a. Điện trở tương đương của đoạn mạch \(R_1\)//\(R_2\) là \(10\Omega\)
b. I = 0,24A ; \(I_1=0,04A\) ; \(I_2=0,2A\)
c. \(I_{123}\) = 0,1A
Ta có: \(R_{tđ}=\dfrac{R_1R_2}{R_1+R_2}=\dfrac{R_1^2}{2R_1}=\dfrac{R_1}{2}\) (do R1=R2)
Mà \(R_{tđ}=\dfrac{U}{I}=\dfrac{12}{0,8}=15\Omega\)
\(\Rightarrow15=\dfrac{R_1}{2}\Leftrightarrow R_1=15.2=30\Omega\)