K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

Có phải đề bài là ......... + \(\frac{7}{x^2+5}\)ko bạn???

Ta có: ĐKXĐ : x thuộc R.

\(\frac{4x^2+16}{x^2+6}=\frac{3}{x^2+1}+\frac{5}{x^2+3}+\frac{7}{x^2+5}\)

<=> \(\frac{4x^2+16}{x^2+6}-3=\left(\frac{3}{x^2+1}-1\right)+\left(\frac{5}{x^2+3}-1\right)+\left(\frac{7}{x^2+5}-1\right)\)

<=> \(\frac{x^2-2}{x^2+6}=\frac{2-x^2}{x^2+1}+\frac{2-x^2}{x^2+3}+\frac{2-x^2}{x^2+5}\)

<=> \(\frac{x^2-2}{x^2+6}-\frac{2-x^2}{x^2+1}-\frac{2-x^2}{x^2+3}-\frac{2-x^2}{x^2+5}=0\)

<=> ( x2 - 2 ) \(\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)\)= 0           ( vì nhân tử chung là x2 - 2 nên 3 hạng tử sau đổi dấu )

<=> x2 - 2 = 0.      ( vì biểu thức trong ngoặc > 0 với mọi x thuộc R )

<=> \(x=\sqrt{2}\)hoặc \(x=-\sqrt{2}\)

Vậy ..........

a) ĐKXĐ: \(x\notin\left\{-3;2;-1;\dfrac{1}{2}\right\}\)

Ta có: \(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)

\(\Leftrightarrow\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{2}{\left(x+3\right)\left(x+1\right)}=\dfrac{-3}{2x-1}\)

\(\Leftrightarrow\dfrac{5\left(x+1\right)}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}-\dfrac{2\left(x-2\right)}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-3}{2x-1}\)

\(\Leftrightarrow\dfrac{5x+5-2x+4}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-3}{2x-1}\)

\(\Leftrightarrow\dfrac{3x+9}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)

\(\Leftrightarrow\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)

\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)

Suy ra: \(\left(x+1\right)\left(x-2\right)=1-2x\)

\(\Leftrightarrow x^2-x-2-1+2x=0\)

\(\Leftrightarrow x^2+x-3=0\)

\(\Delta=1^2-4\cdot1\cdot\left(-3\right)=13\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{13}}{2}\left(nhận\right)\\x_2=\dfrac{-1+\sqrt{13}}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{-1-\sqrt{13}}{2};\dfrac{-1+\sqrt{13}}{2}\right\}\)

Lớp 8 nên chưa học biệt thức delta

Ta có: \(x^2+x-3=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{13}{4}=0\) 

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{13}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{13}-1}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

30 tháng 5 2016

Ta giải như sau:

\(pt\Leftrightarrow\frac{4\left(x^2+6\right)-8}{x^2+6}-\frac{3}{x^2+1}=\frac{5}{x^2+3}+\frac{7}{x^2+5}\)

\(\Leftrightarrow4-\frac{8}{x^2+6}-\frac{3}{x^2+1}=\frac{5}{x^2+3}+\frac{7}{x^2+5}\)

\(\Leftrightarrow\frac{3}{x^2+1}+\frac{5}{x^2+3}+\frac{7}{x^2+5}+\frac{8}{x^2+6}=4\)

Tới đay ta nhận thấy sự tương tự giữa tử và mẫu của các phân thức bên trái.

\(pt\Leftrightarrow\left(\frac{3}{x^2+1}-1\right)+\left(\frac{5}{x^2+3}-1\right)+\left(\frac{7}{x^2+5}-1\right)+\left(\frac{8}{x^2+6}-1\right)=0\)

\(\Leftrightarrow\frac{2-x^2}{x^2+1}+\frac{2-x^2}{x^2+3}+\frac{2-x^2}{x^2+5}+\frac{2-x^2}{x^2+6}=0\)

\(\Leftrightarrow\left(2-x^2\right)\left(\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}+\frac{1}{x^2+6}\right)=0\)

Do \(\left(\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}+\frac{1}{x^2+6}\right)\ne0\forall x\) nên pt tương đương \(2-x^2=0\Leftrightarrow x=\sqrt{2}\) hoặc \(x=-\sqrt{2}\)

Chúc em học tốt :)

29 tháng 5 2016

Bài toán được giải trên tập số phức

x=-căn bậc hai(2), x=căn bậc hai(2); x = -căn bậc hai((8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-5*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59)/(2*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = căn bậc hai((8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-5*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59)/(2*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = -căn bậc hai((căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)-59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = căn bậc hai((căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)-59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = -căn bậc hai((-căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = căn bậc hai((-căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));

5 tháng 2 2022

TK

https://lazi.vn/edu/exercise/giai-phuong-trinh-4x-5-x-1-2-x-x-1-7-x-2-3-x-5

a: \(\Leftrightarrow4x-5=2x-2+x\)

=>4x-5=3x-2

=>x=3(nhận)

b: =>7x-35=3x+6

=>4x=41

hay x=41/4(nhận)

c: \(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)

\(\Leftrightarrow28-6x-12=-9-5x+20\)

=>-6x+16=-5x+11

=>-x=-5

hay x=5(nhận)

d: \(\Leftrightarrow x^2+2x+1-\left(x^2-2x+1\right)=16\)

\(\Leftrightarrow4x=16\)

hay x=4(nhận)

Làm đc 2 bài đầu chưa, t làm câu cuối cho, hai câu đầu dễ í mà

13 tháng 7 2017

\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-4\right)^2=8\left(x-3\right)\left(x+3\right)\)3)

\(\Leftrightarrow x^3+4^3-x\left(x-4\right)^2=8\left(x^2-3^2\right)\)

\(\Leftrightarrow x^3+64-x\left(x^2-8x+16\right)=8x^2-72\)

\(\Leftrightarrow x^3+64-x^3+8x^2-16x-8x^2-72=0\)

\(\Leftrightarrow-16x-8=0\)

\(\Leftrightarrow-8\left(2x-1\right)=0 \)

\(\Rightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy   \(x=\frac{1}{2}\)