K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

bạn ơi sai đề à !!!!!!

B=1 ????????

28 tháng 10 2018

B = 1 = 3 + 5 = chịu + { 2n - 1 }

Mình đoán là :

=> ko phải là số chính phương

Mình ko biết nữa !

27 tháng 9 2016

số số hạng của C là :

[ ( 2n - 1 ) - 1 ] : 2 + 1 = n ( số )

tổng của C là :

[ ( 2n - 1 ) + 1 ] x n : 2 = n x n = n2 

=> C là số chính phương

27 tháng 9 2016

Dãy 1;3;5;..; 2n - 1 có n số hạng 

A = (2n - 1+ 1).n : 2 = n.n = n 2 là số chính phương 

27 tháng 9 2016

C = 1 + 3 + 5 + ... + ( 2n-1 )

Số số hạng dãy trên là :

[ ( 2n - 1 ) - 1 ] : 2 + 1 = n  ( số )

tổng trên là :

[( 2n - 1 ) + 1 ]   x  n  : 2 = n x n = n2

=> tổng trên số số chính phương 

23 tháng 12 2015

  với n=1 ta có  VT =1, VP =1 nên (2) đúng với n=1.
Giả sử (2) đúng với n=k, tức là.
1+3+5+⋯+(2k−1)=k2,k∈N∗.
Ta chứng minh (2) đúng với n=k+1, tức là chứng minh 
1+3+5+⋯+(2k−1)+(2k+1)=(k+1)2
Thật vậy, từ giả thiết quy nạp, ta có
1+3+5+⋯+(2k−1)+(2k+1)=k2+(2k+1)=(k+1)2 
Vậy (2) đúng với mọi số nguyên dương n.

13 tháng 7 2019

#)Giải :

a)Theo đầu bài, ta có : \(n=a^2+b^2\)

\(\Rightarrow2n=2a^2+2b^2\Rightarrow2n=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\)

\(\Rightarrowđpcm\)

b)Theo đầu bài, ta có : \(2n=a^2+b^2\)

\(\Rightarrow n=\frac{a^2}{2}+\frac{b^2}{2}\Rightarrow\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)+\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}\)

\(\Rightarrowđpcm\)

3 tháng 10 2019

Số số hạng của tổng đã cho là : 

[(2n - 1) - 1] : 2 + 1 = (2n - 2)) : 2 + 1

                               = 2(n - 1) : 2 + 1

                                = n - 1 + 1

                                = n

Trung bình  ộng của tổng là : 

[(2n - 1) + 1]  : 2 = (2n - 1 + 1) : 2 

                           = 2n : 2

                           = n 

Khi đó ; 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) = n.n = n2

Vậy 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) là số chính phương

\(S=\left[\left(2n+1-1\right):2+1\right]\times\left(2n+1+1\right):2\)

\(S=\left(n+1\right)\times\left(2n+2\right):2\)

\(S=\left(n+1\right)\times\left(n+1\right)\)

\(S=\left(n+1\right)^2\)( dpcm )

30 tháng 5 2018

Xin lỗi đợi tao một lát nữa đi.