K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

  với n=1 ta có  VT =1, VP =1 nên (2) đúng với n=1.
Giả sử (2) đúng với n=k, tức là.
1+3+5+⋯+(2k−1)=k2,k∈N∗.
Ta chứng minh (2) đúng với n=k+1, tức là chứng minh 
1+3+5+⋯+(2k−1)+(2k+1)=(k+1)2
Thật vậy, từ giả thiết quy nạp, ta có
1+3+5+⋯+(2k−1)+(2k+1)=k2+(2k+1)=(k+1)2 
Vậy (2) đúng với mọi số nguyên dương n.

Mình đoán là :

=> ko phải là số chính phương

Mình ko biết nữa !

27 tháng 9 2016

số số hạng của C là :

[ ( 2n - 1 ) - 1 ] : 2 + 1 = n ( số )

tổng của C là :

[ ( 2n - 1 ) + 1 ] x n : 2 = n x n = n2 

=> C là số chính phương

27 tháng 9 2016

Dãy 1;3;5;..; 2n - 1 có n số hạng 

A = (2n - 1+ 1).n : 2 = n.n = n 2 là số chính phương 

27 tháng 9 2016

C = 1 + 3 + 5 + ... + ( 2n-1 )

Số số hạng dãy trên là :

[ ( 2n - 1 ) - 1 ] : 2 + 1 = n  ( số )

tổng trên là :

[( 2n - 1 ) + 1 ]   x  n  : 2 = n x n = n2

=> tổng trên số số chính phương 

13 tháng 10 2019

có t i c k ko

13 tháng 10 2019

ha tuan anh

Trả lời đc rồi hãng nói đến t i c k 

Tham gia diễn đàn hỏi đáp mục đích chính là để kiếm điểm à

3 tháng 10 2019

Số số hạng của tổng đã cho là : 

[(2n - 1) - 1] : 2 + 1 = (2n - 2)) : 2 + 1

                               = 2(n - 1) : 2 + 1

                                = n - 1 + 1

                                = n

Trung bình  ộng của tổng là : 

[(2n - 1) + 1]  : 2 = (2n - 1 + 1) : 2 

                           = 2n : 2

                           = n 

Khi đó ; 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) = n.n = n2

Vậy 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) là số chính phương

21 tháng 12 2015

1)Gọi số tự nhiên cần tìm có dạng ab

Ta có: ab*45=ab2

nên ab=45

Vậy số cần tìm là 45

2)a.Ta có: n và 2n có tổng các chữ số bằng nhau

nên n chia 9 dư p

nên 2n chia 9 dư p

nên 2n-n chia hết cho 9 hay n chia hết cho 9

 hờ hờ, các câu còn lại lười lm 

26 tháng 12 2015

chả có j mà ngồi cười như thật!

26 tháng 12 2015

Đặt \(A=6^{2n+1}+5^{n+2}\)

Với n=0

=>\(A\left(0\right)=6^{2.0+1}+5^{0+2}=6+5^2=31\) chia hết cho 31

Giả sử n=k thì A sẽ chia hết cho 31

=>\(A\left(k\right)=6^{2k+1}+5^{k+2}\) chia hết cho 31

Chứng minh n=k+1 cũng chia hết cho 31 hay \(A\left(k+1\right)=6^{2\left(k+1\right)+1}+5^{\left(k+1\right)+2}\) chia hết cho 31

 thật vậy

\(A\left(k+1\right)=6^{2k+3}+5^{k+3}=6^{2k+1}.36+5^{k+2}.5\)

\(=5\left(6^{2k+1}+5^{k+2}\right)+3.6^{2k+1}\)

Theo giả thiết ta có

\(6^{2k+1}+5^{k+2}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)\) chia hết cho 31

\(31.6^{2k+1}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)+31.6^{2k+1}\) chia hết cho 31

Hay \(A\left(k+1\right)\) chia hết cho 31

Vậy \(^{6^{2n+1}+5^{n+2}}\) chia hết cho 31