Cho tam giác ABC vuông tại A đường cao AH(H thuộc BC) đường phân giác BD(D thuộc AC).chừng minh
a,\(\frac{BH}{AB}=\frac{AD}{CD}\)
b,So sánh góc B với 30 độ
c,chứng minh \(\frac{AB+CD}{2}=BC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BD/AD=BC/AC=5/4
b: Xét ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: Xét ΔDAC và ΔDKB có
góc DAC=góc DKB
góc ADC=góc KDB
=>ΔDAC đồng dạng với ΔDKB
=>DA/DK=DC/DB
=>DA*DB=DK*DC
a: BC=13cm
b: Xét ΔCAD vuông tại A và ΔCHD vuông tại H có
CD chung
\(\widehat{ACD}=\widehat{HCD}\)
Do đó: ΔCAD=ΔCHD
Suy ra: CA=CH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)