K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

a) C/M ΔABH ∼ ΔCBA, ΔBAM ∼ ΔBCD

Xét ΔABH và ΔCBA, ta có:

\(\widehat{AHB}=\widehat{CAB}=90^0\left(gt\right)\)

\(\widehat{B}:chung\)

Vậy ...................................

Xét ΔBAM và ΔBCD, ta có:

\(\widehat{ABM}=\widehat{CBD}\) (BD phân giác)

\(\widehat{BAM}=\widehat{BCD}\) ( cùng phụ với \(\widehat{HAC}\))

Vậy ......................................

b) C/M \(\frac{AB}{AD}=\frac{CB}{CD}\) và AB.AM = BC.HM

Ta có BD phân giác \(\widehat{B}\) (gt)

\(\frac{AB}{AD}=\frac{CB}{CD}\) (T/C đường phân giác)

Ta có BM phân giác \(\widehat{B}\) (do M∈BD)

\(\frac{AM}{HM}=\frac{AB}{BH}\) (T/C đường phân giác)

\(\frac{AB}{BH}=\frac{BC}{AB}\) (do ΔABH ∼ ΔCBA)

\(\frac{AM}{HM}=\frac{BC}{AB}\)

Vậy AB.AM = BC.HH

TẠM THỜI MÌNH GIẢI a VỚI b NHA, c GIÀI SAU

NV
27 tháng 3 2019

Từ câu b ta có:

\(AB.AM=BC.HM\Rightarrow\frac{AM}{HM}=\frac{BC}{AB}=3\Rightarrow AM=3HM\)

\(\Rightarrow\frac{AH}{HM}=\frac{AM+HM}{HM}=\frac{4HM}{HM}=4\Rightarrow AH=4HM\)

Lại có:

\(\Delta ABH\sim\Delta CAB\Rightarrow\frac{BH}{AB}=\frac{AB}{BC}\Rightarrow BH=\frac{AB^2}{BC}=\frac{AB^2}{3AB}=\frac{AB}{3}\)

\(AB=\frac{1}{3}BC\Rightarrow BH=\frac{1}{9}BC\Rightarrow BC=9BH\)

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.4HM.9BH=36.\left(\frac{1}{2}HM.BH\right)=36.S_{BHM}\)

a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)

BD là phân giác

=>BD/AB=CD/AC
=>BD/3=CD/4=35/7=5

=>DB=15cm; DC=20cm

b: AH=21*28/35=16,8cm

c: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)

ADlà phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có

góc HAB=góc ECD

=>ΔABH đồng dạng với ΔCDE

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

c: góc AED=góc BEH=90 độ-góc EBH

góc ADE=90 độ-góc ABD

góc EBH=góc ABD

=>góc AED=góc ADE

=>AE=AD

16 tháng 5 2015

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \(\sqrt{400}\)= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \(\frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}\)

=> AH = \(\frac{12.16}{20}=9,6\)( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \(\sqrt{51,84}\) = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\(\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}\)

                    <=>   \(\frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}\)

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \(\frac{320}{28}\approx11.43\left(cm\right)\)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \(\frac{320}{28}\)\(\approx\) 8,57 ( cm )

16 tháng 5 2015

Cho hỏi đồng dạng là sao bạn???Tớ mới học lớp 7 thôi,nên chưa biết ^^

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=100\)

hay BC=10cm

Xét ΔABC có BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

hay \(AB^2=BH\cdot BC\)

c: Xét ΔABI và ΔCBD có 

\(\widehat{ABI}=\widehat{CBD}\)

\(\widehat{BAI}=\widehat{BCD}\left(=90^0-\widehat{ABH}\right)\)

Do đó: ΔABI\(\sim\)ΔCBD

d: Xét ΔBHA có BI là đường phân giác ứng với cạnh AH

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)

Xét ΔBAC có BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)

Ta có: \(AB^2=BH\cdot BC\)

nên \(\dfrac{BH}{BA}=\dfrac{AB}{BC}\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)