Cho dãy tỉ số bằng nhau \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{b+c+a}\)
Tính Giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Học sinh giỏi toán đâu về đây nhận tick nè
Mk cần lời giải cụ thể
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{b+c+a}\)
\(\Leftrightarrow\)\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
\(\Leftrightarrow\)\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
+) Nếu \(a+b+c+d=0\)
Do đó :
\(a+b=-\left(c+d\right)\)
\(b+c=-\left(d+a\right)\)
\(c+d=-\left(a+b\right)\)
\(d+a=-\left(b+c\right)\)
\(\Rightarrow\)\(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
+) Nếu \(a+b+c+d\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}=\frac{4}{3}\)
Do đó :
\(\frac{4}{3}\left(b+c+d\right)=\frac{4}{3}\left(a+c+d\right)=\frac{4}{3}\left(a+b+d\right)=\frac{4}{3}\left(a+b+c\right)\)
\(\Leftrightarrow\)\(b+c+d=a+c+d=a+b+d=a+b+c\)
\(\Leftrightarrow\)\(a=b=c=d\) ( bước này tự hiểu nhé )
\(\Rightarrow\)\(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
Vậy \(M=4\) hoặc \(M=-4\)
Chúc bạn học tốt ~