K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2015

Tương tự bài làm của mình trước đó

 

2 tháng 11 2015

\(5^{5^{5^{5^{5^{5^{5^{5^{5^{5^{5^5}}}}}}}}}}\)

2 tháng 2 2023

a) Có 817 - 279 + 329 

 = (34)7 - (33)9 + 329

= 328 - 327 + 329

= 327(3 - 1 + 32)

= 327.11 = 326.33 \(⋮33\)

b) 911 - 910 - 99

= 99(92 - 9 - 1) 

= 99.71

= 98.639 \(⋮639\)

c) P = 3636 - 92000 

Có 3636 = \(\overline{....6}\)

\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}=\overline{.....1}\)

nên P = \(\overline{...6}-\overline{...1}=\overline{...5}\Rightarrow P⋮5\)

dễ thấy P \(⋮9\) mà (5;9) = 1

nên \(P⋮9.5=45\)

 

26 tháng 8 2017

a) Ta có : ab - ba 

=> a . 10 + b - b . 10 + a

=> ( a . 10 ) - a + ( 10 . b ) - b

=> 9. a + 9 . b 

=> 9 . ( a + b ) chia hết cho 9 ( đpcm)

đpcm là điều phải chứng minh nha bạn

Câu b ban làm tương nha 

Chúc bạn học giỏi

30 tháng 8 2017

Thanks bn nha !!!!!!!!!!!!!!

28 tháng 7 2015

9+92+93+...+9100

=9.(1+9)+93(1+9)+...+999(1+9)

=10.(9+93+95+...+999)

->9+92+93+...+9100 chia hết cho 10

5 tháng 10 2017

a) - Xét trường hợp chia hết cho 2

 + Vì n và n + 1 là hai số liên tiếp nên n.(n+1).(2n+1) chia hết cho 2.

- Xét trường hợp chia hết cho 3.

+ Nếu n chia hết cho 3 thì n.(n+1).(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 thì 2n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.

+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.

Vậy n.(n+1).(2n+1) chia hết cho 2.

Mà n.(n+1).(2n+1) chia hết cho 3 và 2 => n.(n+1).(2n+1) chia hết cho 6 (đpcm)

b) 10^9 + 2 = 100.....02.

Tổng các chữ số của số trên là: 1 + 0 + 0 + 0 +... + 0 + 2 = 3 => 10^9+2 chia hết cho 3(đpcm)

c) 10^10 - 1 = 99...99

Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)

d) 10^8 - 1 = 99...9

Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)

E) 10^8 + 8 = 10...08 

Tổng các chữ số của số trên là: 1 + 0 + 0 +... + 0 + 8 = 9 => Nó chia hết cho 9 => 10^8 + 8 chia hết cho 9 (đpcm)

20 tháng 7 2015

ban dua A= 98( 81+9+1)=98x91

vi 91 chia het cho 7 nen 98 x 91 chia het cho 7 nen A chia het cho 7

**** xin pn

20 tháng 7 2015

TA có 

A = \(9^{10}+9^9+9^8\)

   =  \(9^8\left(9^2+9+1\right)\)

   = \(9^8\left(81+9+1\right)\)

   =  \(9^8.91\)

    = \(9^8.13.7\)

Luôn chia hết cho 7 

=> ĐPCM