K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018
  1. a,2^0+2^1+2^2+...+2^2005                                                                                                                                                          2A=2^0.2+2^1.2...+2^2005.2                                                                                                                                                        2^1+2^2+...+2^2006                                                                                                                                                                2A=2A-A=>[2^1+2^2...2^2006]-[2^0+2^1+2^2+...2^2005]                                                                                                             A=[2^2006-2^0]:1
23 tháng 12 2019

a) \(A=1+3+...+3^{50}\)

\(3A=3+3^2+...+3^{51}\)

\(3A-A=2A=3^{51}-1\Rightarrow A=\frac{3^{51}-1}{2}\)

B) \(A=\left(1+3+3^3\right)+\left(3^2+3^3+3^4\right)+....+\left(3^{48}+3^{49}+3^{50}\right)\)

\(=13+13\cdot3^2+...+13\cdot3^{48}\)

\(=13\left(1+3^2+...+3^{48}\right)⋮2\)

\(\Rightarrow A⋮3\)

C)\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)

\(=13+3^3\cdot40+3^7\cdot40+...+3^{47}\cdot40\)

\(=13+40\left(3^3+3^7+...+3^{47}\right)\)

Vậy A chia cho 40 dư 13

d) theo câu C

\(40\left(3^3+3^7+...+3^{47}\right)=10\cdot4\cdot\left(3^3+...+3^{47}\right)\)

có tân cùng  là 0

Mà + thêm 13 nên có tận cùng là 3

23 tháng 12 2019

Cau B mk hơi lỗi xíu , bạn tự sửa nha

7 tháng 2 2019

Chứng minh rằng A chia hết cho 15 => A chia hết cho 3 và 5
Giải:
A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3 ( vì 6 chia hết cho 3)
chứng minh tương tự cho A chia hết cho 5
Tìm chữ số tận cùng của A?
Gi​ải:
Ta có:
2^1 + 2^2 + 2^3 + 2^4 = 2 + 4 + 8 + 16 = 30 tức có tận cùng là 0
2^5 + 2^6 + 2^7 + 2^8 = 32 + 64 + 128 + 256 = 480 tức có tận cùng là 0
Vậy cứ nhóm 4 số sẽ tận cùng là 0 mà từ 2^1 đến 2^100 chia hết cho 4 nhóm vừa đủ. Vậy chữ số tận cùng của A là 

23 tháng 10 2017

cái này minh chỉ giải dc câu 1 thôi nhé. 
bấm máy tính CASIO FX-570 ES/VN PLUS.
quy trình ấn phím:
SHIFT -> LOG(dưới nút ON) -> 2 -> X^*(bên cạnh dấu căn) -> ALPHA -> X -> bấm phím xuống -> 1 ->  bấm phím lên -> 20.
bấm dấu bằng.
ta có kết quả là 2097150.
vậy số tận cùng là 0.

7 tháng 1 2018

a, B = (1+2)+(2^2+2^3+2^4)+(2^5+2^6+2^7)+.....+(2^2003+2^2004+2^2005)

      = 3+2^2.(1+2+2^2)+2^5.(1+2+2^2)+.....+2^2003.(1+2+2^2)

      = 3+2^2.7+2^5.7+.....+2^2003.7

      = 3+7.(2^2+2^5+.....+2^2003) chia 7 dư 3

b, 2B = 2+2^2+....+2^2006

B=2B-B=(2+2^2+....+2^2006)-(1+2+2^2+.....+2^2005) = 2^2006-1

Xét : 2^2006 = 2^2.2^2004 = 4.(2^4)^501 = 4.(16)^501 = 4 .  ....6 = ....4 có tận cùng là 4

=> B có tận cùng là 4-1=3

Tk mk nha

5 tháng 10 2017

Ta có: 31 = ...3

32 = ..9

33 = ..7

34 = ...1

35 = ...3

Vậy chu kì chữ số tận cùng của lũy thừa 3 có 4 số là 3,9,7,1.

Mà 20 : 4 = 5 ( không dư)

=> Chữ số tận cùng của 31 + 32 + ... + 320 là chữ số 1.

Mà trong tổng các số hạng của S còn có thêm chữ số 1 => Chữ số tận cùng của S = 2.

Mà không có số nào mà căn bậc hai có chữ số tận cùng là 2 nên S không phải là số chính phương.

5 tháng 10 2017

S = 1 + 3 + 32 + 3+...+ 320

3S= 3.(1+3+32+33+....320)

3S= 3+32+33+...+320+ 321

3S-S=321-1

2S=321-1

S=321- 1 / 2

321 chia cho 2 nhưng vẫn giữ nguyên s như thế nhé mk viết ra cho bạn hiểu thoi

21 tháng 10 2020

S = 1 + 2 + 22 + 23 + ... + 2100 

2S = 2 . ( 1 + 2 + 22 + 23 + ... + 2100)

2S = 2 + 22 + 23 + 24 + ... + 2101 

2S - S = ( 2 + 22 + 23 + 24 + ... + 2101 ) - ( 1 + 2 + 22 + 23 + ... + 2100 )

1S = 2101 - 1

S = 2101 - 1

Vậy S = 2101 - 1

Học tốt!!!