so sánh
a, 3^600 và 4^400
b, 4^32 và 16^15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4^32=16^16
mà 16^16>16^15
suy ra 4^32>16^15
GTNN của A =2 khi x =3
A= 80.(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A = (38 - 1)(38 + 1)(316 + 1)(332 + 1)
A = (316 - 1)(316 + 1)(332 + 1)
A = (332 - 1)(332 + 1)
A = 364 - 1 < 364 = B
=> A < B
Ta có :
\(16^{15}=\left(4^2\right)^{15}=4^{30}\); \(4^{32}\)
Vì \(4^{30}< 4^{32}\)
=> \(16^{15}< 4^{32}\)
k mik nha
\(A=4.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=\frac{3^{32}-1}{2}< 3^{32}-1=B\)
Vậy \(A< B\)
1). 4^x:16^4=32^2
=>2^2x:(2^4)^4=(2^5)^2
=>2^2x:2^16=2^10
=>2^2x=2^10.2^16
=>2^2x=2^26
=>2x=26
=>x=26:2=13
2)Ta có:
+)3^1000=(3^4)^250=81^250
+)5^750=(5^3)^250=125^250
Vì :81^250<125^250 nên 3^1000<5^750
Mình ghi nhầm đề bài 1 tí đề bài là :
So sánh 2 số A và B biết :
A = (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
Ta có:a)\(^{3^{600}}\)=\(^{\left(3^3\right)^{200}}\)=\(^{27^{200}}\) \(^{4^{400}}\)=\(^{\left(4^2\right)^{200}}\)=\(^{16^{200}}\)
vì 27^200>16^200 => 3^600>4^400
b) \(^{4^{32}=4^{2.16}=16^{16}}\) vì 16^16>16^15 => 4^32>16^15
\(3^{600}=3^{200.3}=\left(3^3\right)^{200}=9^{200}^{_{\left(1\right)}}\)
\(4^{400}=\left(2^2\right)^{400}=2^{800}=2^{200.4}=\left(2^4\right)^{200}=16^{200}_{\left(2\right)}.\)
\(\left(1\right),\left(2\right)\Rightarrow4^{400}>3^{600}\)
\(4^{32}=\left(2^2\right)^{32}=2^{64}_{\left(1\right)}\)
\(16^{15}=\left(2^4\right)^{15}=2^{60}_{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow4^{32}>16^{15}\)