cho\(P=3x^4-7x^3y+10xy^2-14xy^3-y^3-5\)
tìm đa thức Q có ít hạng tử nhất sao cho toongrP+Q là đa thức thuần nhất có
a)Bậc 4 b)Bậc 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(A=3x^4+11x^3-7x^2-2x+1\)có tận cùng là 1
\(1=1\cdot1=-1\cdot\left(-1\right)\)
\(\Rightarrow3x^4+11x^3-7x^2-2x+1=\left(ax+1\right)\left(bx^3+cx^2+dx+1\right)\)
Vì \(3=1\cdot3=\left(-1\right)\cdot\left(-3\right)\)
=> Ta thấy A=1 hoặc A=-1 là không thể
=> A=-3 hoặc A=3
Đặt phép tính cho từng trường hợp ta được
\(3x^4+11x^3-7x^2-2x+1=\left(-3x+1\right)\left(-x^3-4x^2+x+1\right)\)