K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2018

\(A=\left(2+2^2+2^3+2^4\right)+....+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(A=30+...+2^{16}.\left(2+2^2+2^3+2^4\right)\)

\(A=30+...+2^{16}.30\)

\(A=30.\left(1+...+2^{16}\right)⋮5\)

B tương tự ( 57=3.19)

cm tổng đó chia hết cho 3 và 19 là đc =)

17 tháng 10 2018

bn có thể trả lời tiếp đc ko

13 tháng 1 2017

A = 2 + 22 + 23 + 24 + ... + 219 + 220

A = (2 + 22) + (23 + 24) +... + (219 + 220)

A = 2.(1+2) + 23.(1 + 2) +... + 219.(l + 2)

A = 2.3 + 23.3 +...+ 219.3 Do đó A chia hết cho 3

8 tháng 1 2021

do đó A chia hết cho 3

21 tháng 11 2021

A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)

A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)

A=\(3.1+3.2^2+...+3.2^{19}\)

A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)

Vậy A\(⋮3\)

21 tháng 11 2021

A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)

A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)

A=3.1+3.22+...+3.2193.1+3.22+...+3.219

A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3

NÊN  A⋮3

A=2+22+23+...+220

a) Vì cơ số của mỗi lũy thừa là 2 => A chia hết cho 2

b)A=2+22+23+...+220 

A=(2+22)+(23+24)+...+(219+220 )

A=(2+22)+23(2+22)+...+219(2+2)

A=6+23x6+...+219x6

A=6x(1+23+...+219)

Vì 6 chia hết cho 3=> A chia hết cho 3

HT

23 tháng 11 2021

\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)

\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)

23 tháng 12 2021

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)

AH
Akai Haruma
Giáo viên
23 tháng 12 2021

Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$

$=7.57+7^4.57+...+7^{118}.57$

$=57(7+7^4+...+7^{118})\vdots 57$ 

Ta có đpcm.