Tìm giá trị nhỏ nhất của : |x + 2012| + |x - 2010|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng các tính chất:
|-a| = |a|
|a| + |b| > |a + b| (dấu bằng xảy ra khi a và b cùng dấu)
Ta có:
A = |x + 2012| + |x - 2010|
= |x + 2012| + |2010 - x| > |x + 2012 + 2010 - x| = 4022
Vậy A nhỏ nhất bằng 4022 khi (x + 2012) và (2010 - x) cùng dấu. tức là:
+ Hoặc x + 2012 và 2010 - x cùng âm => x < -2012 và x > 2010 (không thỏa mãn)
+ Hoặc x + 2012 và 2010 - x cùng dương => -2012 < x < 2010
ĐS: A nhỏ nhất bằng 4022 khi x nhận một trong các giá trị thuộc [-2012, 2010]
Áp dụng các tính chất:
|-a| = |a| |a| + |b| > |a + b| (dấu bằng xảy ra khi a và b cùng dấu)
Ta có: A = |x + 2012| + |x - 2010| = |x + 2012| + |2010 - x| > |x + 2012 + 2010 - x| = 4022
Vậy A nhỏ nhất bằng 4022 khi (x + 2012) và (2010 - x) cùng dấu. tức là:
+ Hoặc x + 2012 và 2010 - x cùng âm => x < -2012 và x > 2010 (không thỏa mãn)
+ Hoặc x + 2012 và 2010 - x cùng dương => -2012 < x < 2010
ĐS: A nhỏ nhất bằng 4022 khi x nhận một trong các giá trị thuộc [-2012, 2010]
Để M có giá trị nhỏ nhất thì
2012-2011:(2010-x)=1
Suy ra : 2011 : (2010-x) =2011
2010 -x = 1
x= 2009
ta có \(B=\left|x-2010\right|+\left|2012-x\right|+\left|x-2011\right|\)
Áp dụng bđt chưa dấu giá trị tuyệt đó ts có
\(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=2\)
mà \(\left|x-2011\right|\ge0\)
Cộng hết vào => B\(\ge2\)
dấu = xảy ra <=> x=2011