Cho tam giác ABC có diện tích S,các đường cao không nhỏ hơn 1 cm.CMR \(S\ge\frac{\sqrt{3}}{3}\left(cm^2\right)\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CC
1
12 tháng 7 2016
Gọi AD = ha , BE = hb , CF = hc lần lượt là các đường cao của tam giác ABC
Ta có : \(h_b\le1,h_c\le1\)
Không mất tính tổng quát, ta giả sử \(\widehat{C}\le\widehat{B}\le\widehat{A}\). Ta xét hai trường hợp :
- Với tam giác ABC có ba góc nhọn, khi đó \(\widehat{C}\le60^o,\widehat{A}\ge60^o\)
Ta có : \(S_{\Delta ABC}=\frac{1}{2}c.h_c=\frac{1}{2}.\frac{h_b.h_c}{sinA}\le\frac{1}{2sin60^o}=\frac{\sqrt{3}}{3}\)
- Với tam giác ABC không phải là tam giác có ba góc nhọn , khi đó \(\widehat{A}\ge90^o\)
ta có : \(S_{\Delta ABC}\le\frac{1}{2}h_c.c=\frac{h_bh_c}{2sinA}\le\frac{1}{2sin90^o}=\frac{1}{2}< \frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)