Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AD = ha , BE = hb , CF = hc lần lượt là các đường cao của tam giác ABC
Ta có : \(h_b\le1,h_c\le1\)
Không mất tính tổng quát, ta giả sử \(\widehat{C}\le\widehat{B}\le\widehat{A}\). Ta xét hai trường hợp :
- Với tam giác ABC có ba góc nhọn, khi đó \(\widehat{C}\le60^o,\widehat{A}\ge60^o\)
Ta có : \(S_{\Delta ABC}=\frac{1}{2}c.h_c=\frac{1}{2}.\frac{h_b.h_c}{sinA}\le\frac{1}{2sin60^o}=\frac{\sqrt{3}}{3}\)
- Với tam giác ABC không phải là tam giác có ba góc nhọn , khi đó \(\widehat{A}\ge90^o\)
ta có : \(S_{\Delta ABC}\le\frac{1}{2}h_c.c=\frac{h_bh_c}{2sinA}\le\frac{1}{2sin90^o}=\frac{1}{2}< \frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
Câu 2a. Theo đầu bài ta có hình:
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )
1) Do BN = 1/4 BC => SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB => MB = 3/4 AB => SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC
2) Do AM = 1/4 AB => SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA => PA = 3/4 CA => SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC
3) Do CP = 1/4 CA => SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC => NC = 3/4 BC => SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC
Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC