tìm x y z biết xy=-30và yz=42 và z-x=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy=-30\Rightarrow\frac{x}{-30}=\frac{1}{y}\)
\(yz=42\Rightarrow\frac{z}{42}=\frac{y}{1}\)
\(\Rightarrow\frac{x}{30}=\frac{z}{42}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{-30}=\frac{z}{42}=\frac{z-x}{42-\left(-30\right)}=-\frac{12}{72}=-\frac{1}{6}\)
\(\frac{x}{-30}=\frac{1}{-6}\Rightarrow x=5\)
\(\frac{z}{42}=-\frac{1}{6}\Rightarrow z=-7\)
Ta có xy = -30
=> y = -30 : x = -30 : 5 = -6
Vậy y = -6; x = 5 ; z= -7
ta có xy=-30=>. x=-30/y
yz=42=> z=42/y
thay vào z-x=-12 ta được :\(\frac{42}{y}+\frac{30}{y}=-12\)
<=> y=-6
ta có y=-6=> x=-30/-6=5
y=-6=>z=42/-6=-7
vậy (x,y,z) là (5;-6;-7)
Lời giải:
Tập xác định của phương trình
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
Chia cả hai vế cho cùng một số
Đơn giản biểu thức
Lời giải thu được
Ẩn lời giải
Kết quả: Giải phương trình với tập xác định
ta có x, y , z, t # 0
lấy y.t : y.z = 48/24 = 2
hay t = 2.z kết hợp điều này với t.z = 32 ta sẽ có
t = 4 vậy z =8, y = 3 , x =4
t = -4. z = -8 , y = -3 , x= -4
Bài làm:
Dễ thấy a,b,c khác 0
Ta có: \(\frac{xy}{x+y}=\frac{12}{7}\Leftrightarrow\frac{x+y}{xy}=\frac{7}{12}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{7}{12}\) (1)
Tương tự ta tách ra được: \(\frac{1}{y}+\frac{1}{z}=-\frac{1}{6}\) (2) ; \(\frac{1}{z}+\frac{1}{x}=-\frac{1}{4}\) (3)
Cộng vế (1);(2) và (3) lại ta được:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{12}\) (4)
Cộng vế (1) và (2) lại ta được: \(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}=\frac{5}{12}\)
Thay (4) vào ta được: \(\frac{1}{y}+\frac{1}{12}=\frac{5}{12}\Leftrightarrow\frac{1}{y}=\frac{1}{3}\Rightarrow y=3\)
Từ đó ta dễ dàng tính được: \(\hept{\begin{cases}\frac{1}{x}=\frac{7}{12}-\frac{1}{3}=\frac{1}{4}\\\frac{1}{z}=-\frac{1}{6}-\frac{1}{3}=-\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(4;3;-2\right)\)
nhân 2 vế cho 2
=>2x2+2y2+2z2=2xy+2yz+2zx
=>2x2+2y2+2z2-2xy-2yz-2zx=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0
=>(x-y)2+(y-z)2+(z-x)2=0
mà (x-y)2 >= 0 với mọi x,y
(y-z)2 >= 0 với mọi y,z
(z-x)2 >=0 với mọi z,x
=>(x-y)2+(y-z)2+(z-x)2 >= 0
mà theo đề:(x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x=y
y=z
z=x
hay x=y=z
do đó x2015+y2015+z2015=32016
<=>x2015+x2015+x2015=32016
<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015
Vậy x=y=z=2015