K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
15 tháng 1 2022

a) Tam giác ABC vuông tại A (gt).

=> A; B; C cùng thuộc đường tròn đường kính BC. (1)

Xét đường tròn đường kính MC: 

\(\in\) đường tròn đường kính MC (gt).

=> \(\widehat{MDC}=90^o\) hay \(\widehat{BDC}=90^o.\)

Tam giác BDC vuông tại D (\(\widehat{BDC}=90^o\)).

=> B; D; C cùng thuộc đường tròn đường kính BC. (2)

Từ (1); (2) => A; B; C; D cùng thuộc đường tròn đường kính BC.

b) Xét tam giác ABC có:

+ O là trung điểm BC (gt).

+ M là trung điểm AC (gt).

=> OM là đường trung bình.

=> OM // AB (Tính chất đường trung bình).

Mà AB \(\perp\) MC (AB \(\perp\) AC).

=> OM \(\perp\) MC.

Xét đường tròn đường kính MC:  OM \(\perp\) MC (cmt); M \(\in\) đường tròn đường kính MC (gt).

=> OM là tiếp tuyến. 

27 tháng 5 2021

a) Dễ thấy tứ giác AMNC nội tiếp đường tròn đường kính MN.

b) Ta có tứ giác AMNC nội tiếp nên \(\angle BCM=\angle BAN\). Suy ra \(\Delta BCM\sim\Delta BAN\left(g.g\right)\).

Từ đó \(\dfrac{BM}{BN}=\dfrac{CM}{AN}\).

c) Gọi P' là trung điểm của MC.

Khi đó P' là tâm của đường tròn ngoại tiếp tứ giác AMNC.

Ta có \(\widehat{AP'N}=2\widehat{ACN}=180^o-2\widehat{ABC}=180^o-\widehat{MON}\). Suy ra tứ giác AONP' nội tiếp.

Từ đó \(P'\equiv P\). Ta có \(OP=OP'=\dfrac{BC}{2}\) (đường trung bình trong tam giác BMC) không đổi khi M di động trên cạnh AB.

10 tháng 6 2019

Em không vẽ được hình, xin thông cảm

a, Ta có góc EAN=  cungEN=cung EC+ cung EN

Mà cung EC= cung EB(E là điểm chính giữa cung BC)

=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)

=> tam giác AEN đồng dạng tam giác FED

Vậy tam giác AEN đồng dạng tam giác FED

b,Ta có EC=EB=EM

Tam giác EMC cân tại E => EMC=ECM

 MÀ EMC+AME=180, ECM+ABE=180

=> AME = ABE

=> tam giác ABE= tam giác AME

=> AB=AM => tam giác ABM cân tại A

Mà AE là phân giác => AE vuông góc BM

CMTT => AC vuông góc EN

MÀ AC giao BM tại M

=> M là trực tâm tam giác AEN

Vậy M là trực tâm tam giác AEN

c,  Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH

Vì M là trực tâm của tam giác AEN

=> \(EN\perp AN\)

Mà \(OI\perp AN\)(vì I là trung điểm của AC)

=> \(EN//OI\)

MÀ O là trung điểm của EH

=> I là trung điểm của MH (đường trung bình trong tam giác )

=> tứ giác AMNH là hình bình hành 

=> AH=MN

Mà MN=NC

=> AH=NC

=> cung AH= cung NC

=> cung AH + cung KC= cung KN

Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )

NBK là góc nội tiếp chắn cung KN

=> gócKMC=gócKBN

Hay gócKMC=gócKBM

=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)

Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK

10 tháng 6 2019

Anh Khang nè,e cung cấp hình nha:3

23 tháng 5 2016

c) *MOHD nội tiếp (cmb) \(\Rightarrow\)^DHB = ^DOM Mà ^DHM +^BHD=180 và ^DOM +^EOD =180 => ^EOD = ^BHD  

  Mặt khác, ^EOD =^BQD (OM // BQ) => ^BHD = ^BQD => BHQD nội tiếp.

=>đpcm

                                                         

23 tháng 5 2016

d) Kéo dài BQ cắt AC tại J

Cm Q là trung điểm BJ (đường trung bình)

Cm \(\frac{EO}{BQ}\)\(=\)\(\frac{OF}{QJ}\)(\(=\)\(\frac{AO}{AQ}\)\(\Rightarrow\)Đpcm

1: M là điểm chính giữa của cung AC

=>MA=MC

mà OA=OC
nên OM là trung trực của AC

=>OM vuông góc AC tại K

góc AHO+góc AKO=180 độ

=>AHOK nội tiếp

3: Gọi G là trung điểm của AB

ΔOAB cân tại O

mà OG là trung tuyến

nên OG là trung trực của AB

=>OH là một phần đường kính của đường tròn ngoại tiếp ΔOAB

Xet ΔABC co BH/BA=BO/BC

nên OH//AC

=>OH vuông góc OM

=>OM tiếp xúc với đường tròn ngoại tiêp ΔABC

16 tháng 3 2023

Câu 2 thì sao ạ?

1: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

2: ΔOAB cân tại O

mà OM là đường cao

nên M là trung điểm của AB

ΔOAC cân tại O

mà ON là đường cao

nên N là trung điểm của AC

=>NM là đừog trung bình

=>MN//BC

=>MN//AE

=>AMNE là hình thang cân

=>AM=EN; AN=EM

ΔAHB vuông tại H có HM là trung tuyến

nên HM=AB/2=MA=MB

ΔHAC vuông tại H có HN là trung tuyến

nên HN=AN=CN=AC/2

=>HM=EN; HN=EM

=>HMEN là hình bbình hành

=>K làtrung điểm của MN

=>IK vuông góc MN

=>IK vuông góc BC

3: goc MDE+gó MDH=180 độ

=>góc MDE=góc MBH

=>BMDH nội tiếp

=>góc MDB=góc MHB=góc MBH

=>góc MDB=góc MDE

=>DM là phân giác của góc BDE