rút gọn
a)1+5+5^2+5^3+...+5^300
b)1+3+3^2+3^3+...+3^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a.
\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)
b.
\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)
Bài 2.
a.
\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)
b.
\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)
a) Ta có: \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
\(=\dfrac{-\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{-\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
\(=-2\sqrt{2}\)
b) Ta có: \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)
\(=\sqrt{2}\)
c) Ta có: \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
\(=\left(\dfrac{-\sqrt{5}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}-2\right)\left(\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}-2\right)\)
\(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\)
\(=-\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)=-1\)
d) Ta có: \(\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}+\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
\(=\left(\sqrt{2}-\sqrt{3}\right)^2+\left(\sqrt{3}+\sqrt{2}\right)^2\)
\(=5-2\sqrt{6}+5+2\sqrt{6}\)
=10
a) Ta có: \(A=\left(7-2x\right)\left(7+2x\right)+\left(2x+7\right)^2\)
\(=7-4x^2+4x^2+28x+49\)
\(=28x+56\)
b) Ta có: \(B=\left(4x-5\right)^2-\left(2x-1\right)\left(8x-5\right)\)
\(=16x^2-40x+25-\left(16x^2-10x-8x+5\right)\)
\(=16x^2-40x+25-16x^2+18x-5\)
\(=-22x+20\)
c) Ta có: \(C=\left(5x-3\right)^2-2\left(5x-3\right)\left(5-5x\right)+\left(5x-5\right)^2\)
\(=\left(5x-3\right)^2+2\cdot\left(5x-3\right)\left(5x-5\right)+\left(5x-5\right)^2\)
\(=\left(5x-3+5x-5\right)^2\)
\(=\left(10x-8\right)^2\)
\(=100x^2-160x+64\)
d) Ta có: \(D=\left(2a+3b-c\right)\left(2a-3b+c\right)-\left(4a^2-9b^2-c^2\right)\)
\(=\left[\left(2a+\left(3b-c\right)\right)\left(2a-\left(3b-c\right)\right)\right]-\left(4a^2-9b^2-c^2\right)\)
\(=4a^2-\left(3b-c\right)^2-4a^2+9b^2+c^2\)
\(=-9b^2+6bc-c^2+9b^2+c^2\)
=6bc
`a)(5sqrt2-2sqrt5)/(sqrt5-sqrt2)+6/(2-sqrt{10})`
`=(sqrt{10}(sqrt5-sqrt2))/(sqrt5-sqrt2)+(6(2+sqrt{10}))/(4-10)`
`=sqrt{10}-(2+sqrt{10})`
`=-2`
`b)6/(sqrt5-1)+7/(1-sqrt3)-2/(sqrt3-sqrt5)`
`=(6(sqrt5+1))/(5-1)+(7(1+sqrt3))/(1-3)-(2(sqrt3+sqrt5))/(3-5)`
`=(6(sqrt5+1))/4-(7+7sqrt3)/2+sqrt3+sqrt5`
`=(3sqrt5+3)/2-(7+7sqrt3)/2+sqrt3+sqrt5`
`=(3sqrt5+3-7-7sqrt3+2sqrt3+2sqrt5)/2`
`=(5sqrt5-5sqrt3-4)/2`
\(a,=\sqrt{2}\left(\sqrt{5}+3\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\sqrt{2}\left(\sqrt{5}+3\right)\left(3-\sqrt{5}\right)=4\sqrt{2}\\ b,=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\sqrt{4}=2\)
a)\(=\left(\sqrt{10}+3\sqrt{2}\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\left(\sqrt{10}+3\sqrt{2}\right)\left(3-\sqrt{5}\right)=3\sqrt{10}-5\sqrt{2}+9\sqrt{2}-3\sqrt{10}=4\sqrt{2}\)
b) \(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\sqrt{9-5}=\sqrt{4}=2\)
\(1,\)
\(a,\sqrt{6-2\sqrt{5}}=\sqrt{\sqrt{5^2}-2.\sqrt{5}.1+1}=\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)
\(b,\sqrt{8+2\sqrt{7}}=\sqrt{\sqrt{7^2}+2.\sqrt{7}.1+1}=\sqrt{\left(\sqrt{7}+1\right)^2}=\left|\sqrt{7}+1\right|=\sqrt{7}+1\)
\(2,\)
\(a,\sqrt{\left(\sqrt{10}-3\right)^2}-\sqrt{10}\)
\(=\left|\sqrt{10}-3\right|-\sqrt{10}\)
\(=\sqrt{10}-\sqrt{10}-3\)
\(=-3\)
\(b,\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{8-2\sqrt{7}}\)
\(=\left|5+\sqrt{7}\right|-\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=5+\sqrt{7}-\left|\sqrt{7}-1\right|\)
\(=5+\sqrt{7}-\sqrt{7}+1\)
\(=6\)