So sánh 2^300 và 3^200 giúp mk nha.
Help and i give tick for you!!!!
See ya!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I-2I^{300}vàI-4I^{500}\)
ta có I -2I ^300 = 2^300
I-4I^500= 4^500= 2^2^500= 2^1000
vậy I-4I mũ 500 lớn hơn
2^300 = (2^3)^100 = 8^100
3^200 = (3^2)^100 = 9^100
Vì 8<9 => 8^100 < 9^100
Vậy 2^300 < 3^200
\(3^{-200}=\left(3^{-2}\right)^{100}=\left(\frac{1}{9}\right)^{100}\)
\(2^{-300}=\left(2^{-3}\right)^{100}=\left(\frac{1}{8}\right)^{100}\)
\(\frac{1}{9}< \frac{1}{8}\Rightarrow\left(\frac{1}{9}\right)^{100}< \left(\frac{1}{8}\right)^{100}\Rightarrow3^{-200}< 2^{-300}\)
\(33^{52}=\left(33^4\right)^{13}\)
\(44^{39}=\left(44^3\right)^{13}\)
\(33^4=\left(33^{\frac{4}{3}}\right)^3\approx106^3\)
\(106^3>44^3\Rightarrow\left(33^4\right)^{13}> \left(44^3\right)^{13}\Rightarrow33^{52}>44^{39}\)
Vì: \(2^{300}=\left(2^3\right)^{100}=8^{100}\)\(< \) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
tíc mình nha
a) Ta có: \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì 8 < 9 => 8100 < 9100
=> 2300 < 3200
b) Hình như đề sai Phải so sánh với 3.2410 chứ bạn
Ta có: \(3.24^{10}=3.\left(3.2^3\right)^{10}=3^{11}.2^{30}=3^{11}.4^{15}< 4^{15}.4^{15}=4^{30}\)
\(\Rightarrow2^{30}+3^{30}+4^{30}>3.24^{10}\)
Ta có 2*300 = (2*3)*100 = 8*100
3*200 = (3*2)*100 = 9*100
=> 2*300 < 3*200
Ta có: 2300 = (23)100 = 8100
3200 = (32)100 = 9100
Mà 8 < 9 => 2300 < 3200
2^300= 2^3.100= (2^3)^100= 8^100
3^200=3^2.100=(3^2)^100=9^100
Vì 8<9 nên 8^100<9^100
Vậy 2^300< 3^200
Ta có: 2^300=(2^3)^100=8^100
3^200=(3^2)^100=9^100
Do 8<9 => 8^100<9^100
Hay 2^300<3^200
k cho mik nhé !
Bài 1: so sánh 2300 và 3200
Bài làm
Ta có 2300=(23)100=8100
2200=(22)100=4100
Vì 8100>4100
Nên 2300>2200
Vậy 2300>2200