K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

Đầu tiên ta xét chữ số tận cùng của \(4^{2003}\). Nhận thấy \(4^{2003}\) có thể đưa về dạng \(4^{4n+3}\)  .Mặt khác theo tính chất: Các số có tận cùng là 1,4,5,6,9 khi nâng lên lũy thừa bậc 4n + 3 thì không thay đổi chữ số tận cùng

Ta có: \(4^{2003}=4^{2000+3}=4^{4.500+3}=...4\)

\(\Rightarrow2^{4^{2003}}=2^{...4}=...6\) (theo tính chất các số có tận cùng là 2,4,8 khi nâng lên lũy thừa bậc 4n thì có tận cùng là 6)

Vậy \(2^{4^{2003}}\) có tận cùng là 6

29 tháng 9 2018

Bài mình làm đúng nhé! Bọn không biết thì dựa cột mà nghe,ok? tớ rất ghét những cái bọn gato suốt ngày chọn sai cho tớ!Mỗi lần mở máy thấy 100 cái chọn sai là thấy nản rồi!

28 tháng 9 2018

tận cùng là 6

1 tháng 1 2016

hỏi người khác tớ ko biết đừng hỏi tớ

1 tháng 1 2016

921 tích đi ma nha nha nha nha nha nha nha 

4 tháng 1 2016

tui chỉ biết tìm chữ số tận cùng thui

4 tháng 1 2016

Mik mới biết tìm 2 chữ số tận cùng thôi 

9 tháng 8 2018

a)(...4)

b)(...4)

c)(...6)

tích đúng cho mình nha

30 tháng 9 2018

\(3^{2^{2003}}=3^{\overline{...6}}=\overline{...9}\)

Vậy \(3^{2^{2003}}\)có tận cùng là 9

Đây không phải là bài lớp 9